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Problems for today

Today we study how to visualize a smooth transition between two clouds
of points. Specifically we analyze:

© Linear interpolation of the input space
@ Linear interpolation in the pre-SVD space
© Linear Interpolation in the parameter space

for item 3, we shall study matrix logarithm.
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The Visualization Problem
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Visualization

How to Continuously Transform One Set of Points into Another

Consider two sets of n points in RY, each given by columns of d x n
matrices

X=[X1 X e Xn}7yz{}/1 y2 e )/n}

Last time we learned how to find an orthogonal transformation (d x d
matrix) Q, a translation d-vector 2, and a scalar 3 > 0 that minimize:

... 2
mln’mlzeQEO(d),zGRd,a>0J(QvZa a) , J(Q.z,a) =Y —aQ(X — ZlT)HF

Today we shall describe continuous (even smooth) transformations

Q(t) € O(d), z(t) € RY and a(t) € R* so that

X(t) = a(t)Q(t)(X — z(t)1T) represents a continuous transition from set
X toset Y.
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The Visualization Problem
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Continuous Transition - Method 1

Linear Interpolation

The simplest continuous interpolation method is to consider:
Xt)=1-t)X+tY , 0<t<1

The problem with such interpolation is that it does not mentain a correct
aspect ratio between points.

However it does provide a continuous and smooth transition between the
two clouds of points.

Radu Balan (UMD) Registration and Matrix Log



The Visualization Problem
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Continuous Transition - Method 2
Linear interpolation pre-SVD

A better method is to use a continuous interpolation of the covariance
matrix. Recall the algorithm:

@ Compute centers x = %X -1, y= %Y -1 and recenter data
X=X-x-1T, Y=Y —-y-1T.
@ Compute the d x d matrix R = XYT:

@ Compute the Singular Value Decomposition (SVD), R = UL VT,
where U,V € R%9 are orthogonal matrices, and

Y = diag(o1,---,04) is the diagonal matrix with singular values
01,-+,04 > 0 on its diagonal;
Q Compute Q = VUT, 2 =% — (A?T)_/ and a = trﬁ;;l(zz)
F

Idea: Repeat steps 3 and 4 with R(t) = (1 — t)lq + tR.
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The Visualization Problem
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Continuous Transition - Method 2
Linear interpolation pre-SVD
Algorithm (Pre-SVD Interpolation)
Inputs: Matrices X, Y € RY*"; step € (0, 1).
@ Compute centers x = %X -1,y = %Y -1 and recenter data

X=X-x-1T, Y=Y—-y5.1T.
Q@ Compute thed x d matrix R=XYT; SVD: R=UZVT; Q= WT;
5 x_ QT}_/ . trace(ZZ).
’ X1
© Fort=(0: step: 1) repeat
0 Compute R = (1 — t)ly + tR;
@ Compute the Singular Value Decomposition (SVD), R = ULV, where
U,V € R¥? are orthogonal matrices, and ¥ = diag(o1,---,04) is the
diagonal matrix with singular values o1,---,04 > 0 on its diagonal;
© Compute Q(t) = VUT, z(t) = t2 and a(t) = 1 — t + ta.
@ Compute X(t) = a(t)Q(t)(X — z(t)17)
Outputs: @ = Q(1). 2 = z(1). 5 = a(1)_and movie (X(t))a
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The Visualization Problem
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Continuous Transition - Method 3

Linear interpolation in the parameter space

Recall that the tangent space so(d) is the linear space of anti-symmetric
matrices.

A remarkable results in the theory of Lie groups say that the connected
component of the identity (in this case, SO(d)) of a compact Lie group is
the image of the tangent space (the Lie algebra, so(d)) under the
exponential map.

Here this means: For any Q € O(d) so that det(Q) = 1 there is an
antisymmetric matrix A € R9*9, AT = —A, so that Q = exp(A).
Consequence of this result is the following idea: Interpolate Q(t), z(t) and
a(t) using a linear interpolation in the space (A, z, a):

Q(t) =exp(tA) , z(t)=(1—-t)0+tz=tz , a(t)=(1—1t)+ta
and then compute the sequence of interpolants:

X(t) = a(t)Q(t)(X — z(£)17).
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The Matrix Logarithm
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Matrix Logarithm

Definition and Properties

Notation:

SO(d) ={Q e R Q1=QT, det(Q) = +1}

Theorem

Given @ € SO(d), there exists a matrix A € R9%9 so that AT = —A and
exp(A) = Q. The matrix A is not unique. However, there exists an
orthogonal matrix E so that any two antisymmetric matrices A and A so
that exp(A) = exp(A) = Q satisfy %ET(A — A)E has a sparse structure
with only integer entries. Furthermore, the non-zero entries may occur
only on the (k, I) entries associated to eigenvalues A\ = \j # 1.

There exists a unique antisymmetric matrix A with smallest Frobenius
norm. That matrix is called the principal matrix logarithm of Q.



The Matrix Logarithm
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Construction of Matrix Logarithm

Luckily for us, Matlab provides a function to compute the matrix
logarithm:

> % Generate a random orthogonal matrix
> [Q, D, V] = svd(randn(10));

> A = logm(Q);

> % Check conversion error

> norm(Q — expm(A))

Caveats:
0 -1 0 —1.5708
Q= [ 1 0 ]”Og’”(Q)_ 1.5708 0 ]
Q= 01 logm(Q) = 0.0000 + 1.5708/ 0.0000 — 1.5708/
1 0|’ g | 0.0000 —1.5708/ 0.0000 + 1.5708i
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The Matrix Logarithm
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Matrix Logarithm
Algorithm

Given Q € SO(d) with det(Q) =1, how to find A € RI%d AT — _A so
that Q = exp(A) 7 Let {\1, -+, Ay} denote the set of eigenvalues of Q.
Since QQT = 1, it follows that each [Ak| = 1.

Algorithm (Matrix Logarithm)
Input: Matrix Q € SO(d).

@ Determine the diagonal form Q = VDV*, where V is a unitary matrix
and D is the diagonal matrix of eigenvalues. Initialize L = Ogxq

© Repeat:
@ For each eigenvalue \x = 1 set:

E(: k)= V(. k) , Lk,k)=0
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The Matrix Logarithm
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Matrix Logarithm

Algorithm-cont’ed

Algorithm

@ For each group of eigenvalues \y = 11 = —1 set
E(,k:k+1)=V(,k:k+1) and

[ L(i(—kk’f,)k) L(i(j:f—lt—:il—)l) } - [ —Ow 0 }

© For each pair of eigenvalues A\ = A¢+1 € C with imag(\x) # 0
determine ¢ € (0,27) so that \x = €'? set E(:, k) = v/2real(V(:, k)),
E(:;,k +1) = v2imag(V(:, k)) and

[ L(i(—l:f,)k) L(i(—li(jf—lti)l) } - [ Y6 }

© Compute A= ELET.
N :

d><d h AT

oyt Matrix A
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The Matrix Logarithm
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Interpolation in the parameter space

Algorithm (Parameters Space Interpolation)

Inputs: Matrices X,Y € R9*"; step € (0, 1).

o

2]

Compute centers x = %X -1, y= %Y -1 and recenter data
X=X-x-1T, Y=Y —-y-1T.
Compute the d x d matrix R=XYT;
Compute the Singular Value Decomposition (SVD), R = UZVT,
where U, V € R¥*9 are orthogonal matrices, and
Y = diag(o1,---,04) is the diagonal matrix with singular values
01, -+,04 > 0 on its diagonal;
Compute Q =WUT, 5= trlT)f(ie'l(Qz) and Z = x — %(AQT)'/.

F
Compute the diagonal matrix J € O(d) and antisymmetric matrix
A= —AT so that Q = Jexp(A).
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The Matrix Logarithm
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Interpolation in the parameter space - cont'ed

Algorithm

Q Fort=(0:step: 1) repeat
0 Compute Q(t) = Jexp(tA); z(t) =tz and a(t) =1—t+ ta.
@ Compute X(t) = a(t)Q(t)(X — z(t)17)

Outputs: @ = Q(1), 2 = z(1), 4 = a(1), and movie (X(t))o<t<1.
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