
Lecture 7: Visualization and Continuous Object
Transformations

Radu Balan

University of Maryland

April 16, 2024



The Visualization Problem The Matrix Logarithm

Problems for today

Today we study how to visualize a smooth transition between two clouds
of points. Specifically we analyze:

1 Linear interpolation of the input space
2 Linear interpolation in the pre-SVD space
3 Linear Interpolation in the parameter space

for item 3, we shall study matrix logarithm.
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Visualization
How to Continuously Transform One Set of Points into Another

Consider two sets of n points in Rd , each given by columns of d × n
matrices

X =
[

x1 x2 · · · xn
]
,Y =

[
y1 y2 · · · yn

]
Last time we learned how to find an orthogonal transformation (d × d
matrix) Q̂, a translation d-vector ẑ , and a scalar â > 0 that minimize:

minimizeQ∈O(d),z∈Rd ,a>0J(Q, z , a) , J(Q, z , a) = ‖Y − aQ(X − z1T )‖2
F

Today we shall describe continuous (even smooth) transformations
Q(t) ∈ O(d), z(t) ∈ Rd and a(t) ∈ R+ so that
X (t) = a(t)Q(t)(X − z(t)1T ) represents a continuous transition from set
X to set Y .
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Continuous Transition - Method 1
Linear Interpolation

The simplest continuous interpolation method is to consider:

X (t) = (1− t)X + tY , 0 ≤ t ≤ 1

The problem with such interpolation is that it does not mentain a correct
aspect ratio between points.
However it does provide a continuous and smooth transition between the
two clouds of points.
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Continuous Transition - Method 2
Linear interpolation pre-SVD

A better method is to use a continuous interpolation of the covariance
matrix. Recall the algorithm:

1 Compute centers x̄ = 1
nX · 1, ȳ = 1

nY · 1 and recenter data
X̃ = X − x̄ · 1T , Ỹ = Y − ȳ · 1T .

2 Compute the d × d matrix R̂ = X̃ Ỹ T ;
3 Compute the Singular Value Decomposition (SVD), R̂ = UΣV T ,

where U,V ∈ Rd×d are orthogonal matrices, and
Σ = diag(σ1, · · · , σd ) is the diagonal matrix with singular values
σ1, · · · , σd ≥ 0 on its diagonal;

4 Compute Q̂ = VUT , ẑ = x̄ − Q̂T ȳ and â = trace(Σ)
‖X̃‖2

F
.

Idea: Repeat steps 3 and 4 with R(t) = (1− t)Id + tR̂.
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Continuous Transition - Method 2
Linear interpolation pre-SVD
Algorithm (Pre-SVD Interpolation)
Inputs: Matrices X ,Y ∈ Rd×n; step ∈ (0, 1).

1 Compute centers x̄ = 1
nX · 1, ȳ = 1

nY · 1 and recenter data
X̃ = X − x̄ · 1T , Ỹ = Y − ȳ · 1T .

2 Compute the d × d matrix R̂ = X̃ Ỹ T ; SVD: R̂ = UΣV T ; Q̂ = VUT ;
ẑ = x̄ − Q̂T ȳ ; â = trace(Σ)

‖X̃‖2
F

.

3 For t = (0 : step : 1) repeat
1 Compute R = (1− t)Id + tR̂;
2 Compute the Singular Value Decomposition (SVD), R = UΣV T , where

U,V ∈ Rd×d are orthogonal matrices, and Σ = diag(σ1, · · · , σd ) is the
diagonal matrix with singular values σ1, · · · , σd ≥ 0 on its diagonal;

3 Compute Q(t) = VUT , z(t) = tẑ and a(t) = 1− t + tâ.
4 Compute X (t) = a(t)Q(t)(X − z(t)1T )

Outputs: Q̂ = Q(1), ẑ = z(1), â = a(1), and movie (X (t))0≤t≤1.
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Continuous Transition - Method 3
Linear interpolation in the parameter space

Recall that the tangent space so(d) is the linear space of anti-symmetric
matrices.
A remarkable results in the theory of Lie groups say that the connected
component of the identity (in this case, SO(d)) of a compact Lie group is
the image of the tangent space (the Lie algebra, so(d)) under the
exponential map.
Here this means: For any Q ∈ O(d) so that det(Q) = 1 there is an
antisymmetric matrix A ∈ Rd×d , AT = −A, so that Q = exp(A).
Consequence of this result is the following idea: Interpolate Q(t), z(t) and
a(t) using a linear interpolation in the space (A, z , a):

Q(t) = exp(tA) , z(t) = (1− t)0 + tẑ = tẑ , a(t) = (1− t) + tâ
and then compute the sequence of interpolants:

X (t) = a(t)Q(t)(X − z(t)1T ).
In the case det(Q) = −1, multiply Q with an orthogonal diagonal matrix
J so that det(J) = −1. Thus Q = J exp(A) for some antisymmetric
matrix A.
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Matrix Logarithm
Definition and Properties

Notation:

SO(d) = {Q ∈ Rd×d , Q−1 = QT , det(Q) = +1}

Theorem
Given Q ∈ SO(d), there exists a matrix A ∈ Rd×d so that AT = −A and
exp(A) = Q. The matrix A is not unique. However, there exists an
orthogonal matrix E so that any two antisymmetric matrices A and Ã so
that exp(A) = exp(Ã) = Q satisfy 1

2πET (Ã− A)E has a sparse structure
with only integer entries. Furthermore, the non-zero entries may occur
only on the (k, l) entries associated to eigenvalues λk = λ̄l 6= 1.

There exists a unique antisymmetric matrix A with smallest Frobenius
norm. That matrix is called the principal matrix logarithm of Q.
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Construction of Matrix Logarithm
Luckily for us, Matlab provides a function to compute the matrix
logarithm:

> % Generate a random orthogonal matrix
> [Q,D,V ] = svd(randn(10));
> A = logm(Q);
> % Check conversion error
> norm(Q − expm(A))

Caveats:

Q =
[

0 −1
1 0

]
, logm(Q) =

[
0 −1.5708

1.5708 0

]

Q =
[

0 1
1 0

]
, logm(Q) =

[
0.0000 + 1.5708i 0.0000− 1.5708i
0.0000− 1.5708i 0.0000 + 1.5708i

]
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Matrix Logarithm
Algorithm

Given Q ∈ SO(d) with det(Q) = 1, how to find A ∈ Rd×d , AT = −A, so
that Q = exp(A) ? Let {λ1, · · · , λd} denote the set of eigenvalues of Q.
Since QQT = Id , it follows that each |λk | = 1.

Algorithm (Matrix Logarithm)
Input: Matrix Q ∈ SO(d).

1 Determine the diagonal form Q = VDV ∗, where V is a unitary matrix
and D is the diagonal matrix of eigenvalues. Initialize L = 0d×d

2 Repeat:
1 For each eigenvalue λk = 1 set:

E (:, k) = V (:, k) , L(k, k) = 0
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Matrix Logarithm
Algorithm-cont’ed

Algorithm
2 For each group of eigenvalues λk = λk+1 = −1 set

E (:, k : k + 1) = V (:, k : k + 1) and[
L(k, k) L(k, k + 1)

L(k + 1, k) L(k + 1, k + 1)

]
=
[

0 π
−π 0

]
3 For each pair of eigenvalues λk = λk+1 ∈ C with imag(λk) 6= 0

determine ϕ ∈ (0, 2π) so that λk = e iϕ set E (:, k) =
√

2real(V (:, k)),
E (:, k + 1) =

√
2imag(V (:, k)) and[
L(k, k) L(k, k + 1)

L(k + 1, k) L(k + 1, k + 1)

]
=
[

0 ϕ
−ϕ 0

]
3 Compute A = ELET .

Output: Matrix A ∈ Rd×d so that AT = −A and Q = exp(A).
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Interpolation in the parameter space

Algorithm (Parameters Space Interpolation)
Inputs: Matrices X ,Y ∈ Rd×n; step ∈ (0, 1).

1 Compute centers x̄ = 1
nX · 1, ȳ = 1

nY · 1 and recenter data
X̃ = X − x̄ · 1T , Ỹ = Y − ȳ · 1T .

2 Compute the d × d matrix R̂ = X̃ Ỹ T ;
3 Compute the Singular Value Decomposition (SVD), R̂ = UΣV T ,

where U,V ∈ Rd×d are orthogonal matrices, and
Σ = diag(σ1, · · · , σd ) is the diagonal matrix with singular values
σ1, · · · , σd ≥ 0 on its diagonal;

4 Compute Q̂ = VUT , â = trace(Σ)
‖X̃‖2

F
and ẑ = x̄ − 1

â Q̂T ȳ .

5 Compute the diagonal matrix J ∈ O(d) and antisymmetric matrix
A = −AT so that Q̂ = Jexp(A).
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Interpolation in the parameter space - cont’ed

Algorithm
6 For t = (0 : step : 1) repeat

1 Compute Q(t) = J exp(tA); z(t) = tẑ and a(t) = 1− t + t â.
2 Compute X (t) = a(t)Q(t)(X − z(t)1T )

Outputs: Q̂ = Q(1), ẑ = z(1), â = a(1), and movie (X (t))0≤t≤1.
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