Lecture 7: Visualization and Continuous Object Transformations

Radu Balan

University of Maryland

April 16, 2024

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Problems for today

Today we study how to visualize a smooth transition between two clouds of points. Specifically we analyze:

- Linear interpolation of the input space
- **2** Linear interpolation in the pre-SVD space
- **③** Linear Interpolation in the parameter space

for item 3, we shall study matrix logarithm.

Visualization

How to Continuously Transform One Set of Points into Another

Consider two sets of *n* points in \mathbb{R}^d , each given by columns of $d \times n$ matrices

$$X = \left[\begin{array}{cccc} x_1 & x_2 & \cdots & x_n \end{array} \right], Y = \left[\begin{array}{ccccc} y_1 & y_2 & \cdots & y_n \end{array} \right]$$

Last time we learned how to find an orthogonal transformation ($d \times d$ matrix) \hat{Q} , a translation *d*-vector \hat{z} , and a scalar $\hat{a} > 0$ that minimize:

$$\textit{minimize}_{Q \in O(d), z \in \mathbb{R}^{d}, a > 0} J(Q, z, a) \quad , \quad J(Q, z, a) = \left\| Y - aQ(X - z1^{T}) \right\|_{F}^{2}$$

Today we shall describe continuous (even smooth) transformations $Q(t) \in O(d), z(t) \in \mathbb{R}^d$ and $a(t) \in \mathbb{R}^+$ so that $X(t) = a(t)Q(t)(X - z(t)1^T)$ represents a continuous transition from set X to set Y.

Continuous Transition - Method 1

Linear Interpolation

The simplest continuous interpolation method is to consider:

$$X(t)=(1-t)X+tY$$
 , $0\leq t\leq 1$

The problem with such interpolation is that it does not mentain a correct aspect ratio between points.

However it does provide a continuous and smooth transition between the two clouds of points.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Continuous Transition - Method 2

Linear interpolation pre-SVD

A better method is to use a continuous interpolation of the covariance matrix. Recall the algorithm:

• Compute centers $\bar{x} = \frac{1}{n}X \cdot 1$, $\bar{y} = \frac{1}{n}Y \cdot 1$ and recenter data $\tilde{X} = X - \bar{x} \cdot 1^T$, $\tilde{Y} = Y - \bar{y} \cdot 1^T$.

2 Compute the $d \times d$ matrix $\hat{R} = \tilde{X}\tilde{Y}^{T}$;

• Compute the Singular Value Decomposition (SVD), $\hat{R} = U\Sigma V^T$, where $U, V \in \mathbb{R}^{d \times d}$ are orthogonal matrices, and $\Sigma = diag(\sigma_1, \dots, \sigma_d)$ is the diagonal matrix with singular values $\sigma_1, \dots, \sigma_d \geq 0$ on its diagonal;

• Compute
$$\hat{Q} = VU^T$$
, $\hat{z} = \bar{x} - \hat{Q}^T \bar{y}$ and $\hat{a} = \frac{trace(\Sigma)}{\|\tilde{X}\|_F^2}$.

Idea: Repeat steps 3 and 4 with $R(t) = (1 - t)I_d + t\hat{R}$.

Continuous Transition - Method 2

Linear interpolation pre-SVD

Algorithm (Pre-SVD Interpolation)

Inputs: Matrices $X, Y \in \mathbb{R}^{d \times n}$; step $\in (0, 1)$.

- Compute centers $\bar{x} = \frac{1}{n}X \cdot 1$, $\bar{y} = \frac{1}{n}Y \cdot 1$ and recenter data $\tilde{X} = X \bar{x} \cdot 1^T$, $\tilde{Y} = Y \bar{y} \cdot 1^T$.
- **2** Compute the $d \times d$ matrix $\hat{R} = \tilde{X}\tilde{Y}^{T}$; SVD: $\hat{R} = U\Sigma V^{T}$; $\hat{Q} = VU^{T}$; $\hat{z} = \bar{x} \hat{Q}^{T}\bar{y}$; $\hat{a} = \frac{trace(\Sigma)}{\|\tilde{X}\|_{F}^{2}}$.

• Compute $R = (1-t)I_d + t\hat{R}$;

Ocompute the Singular Value Decomposition (SVD), R = UΣV^T, where U, V ∈ ℝ^{d×d} are orthogonal matrices, and Σ = diag(σ₁, · · · , σ_d) is the diagonal matrix with singular values σ₁, · · · , σ_d ≥ 0 on its diagonal;

() Compute
$$Q(t) = VU^T$$
, $z(t) = t\hat{z}$ and $a(t) = 1 - t + t\hat{a}$

• Compute
$$X(t) = a(t)Q(t)(X - z(t)1^T)$$

Outputs:
$$\hat{Q} = Q(1)$$
, $\hat{z} = z(1)$, $\hat{a} = a(1)$, and movie $(X(t))_{0 \le t \le 1}$
Radu Balan (UMD) Registration and Matrix Log

Continuous Transition - Method 3

Linear interpolation in the parameter space

Recall that the tangent space so(d) is the linear space of anti-symmetric matrices.

A remarkable results in the theory of Lie groups say that the connected component of the identity (in this case, SO(d)) of a compact Lie group is the image of the tangent space (the Lie algebra, so(d)) under the exponential map.

Here this means: For any $Q \in O(d)$ so that det(Q) = 1 there is an antisymmetric matrix $A \in \mathbb{R}^{d \times d}$, $A^T = -A$, so that Q = exp(A). Consequence of this result is the following idea: Interpolate Q(t), z(t) and a(t) using a linear interpolation in the space (A, z, a):

$$Q(t) = exp(tA)$$
 , $z(t) = (1-t)0 + t\hat{z} = t\hat{z}$, $a(t) = (1-t) + t\hat{a}$

and then compute the sequence of interpolants:

$$X(t) = a(t)Q(t)(X - z(t)\mathbf{1}_{c}^{T})$$

Matrix Logarithm

Definition and Properties

Notation:

$$SO(d) = \{ Q \in \mathbb{R}^{d imes d} \ , \ Q^{-1} = Q^T \ , \ det(Q) = +1 \}$$

Theorem

Given $Q \in SO(d)$, there exists a matrix $A \in \mathbb{R}^{d \times d}$ so that $A^T = -A$ and exp(A) = Q. The matrix A is not unique. However, there exists an orthogonal matrix E so that any two antisymmetric matrices A and \tilde{A} so that $exp(A) = exp(\tilde{A}) = Q$ satisfy $\frac{1}{2\pi}E^T(\tilde{A} - A)E$ has a sparse structure with only integer entries. Furthermore, the non-zero entries may occur only on the (k, l) entries associated to eigenvalues $\lambda_k = \overline{\lambda_l} \neq 1$.

There exists a unique antisymmetric matrix A with smallest Frobenius norm. That matrix is called the *principal matrix logarithm* of Q.

Radu Balan (UMD)

Construction of Matrix Logarithm

Luckily for us, Matlab provides a function to compute the matrix logarithm:

$$>$$
 % Generate a random orthogonal matrix
 $> [Q, D, V] = svd(randn(10));$
 $> A = logm(Q);$
 $>$ % Check conversion error
 $> norm(Q - expm(A))$

Caveats:

$$Q = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, logm(Q) = \begin{bmatrix} 0 & -1.5708 \\ 1.5708 & 0 \end{bmatrix}$$
$$Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, logm(Q) = \begin{bmatrix} 0.0000 + 1.5708i & 0.0000 - 1.5708i \\ 0.0000 - 1.5708i & 0.0000 + 1.5708i \end{bmatrix}$$

э

Matrix Logarithm

Given $Q \in SO(d)$ with det(Q) = 1, how to find $A \in \mathbb{R}^{d \times d}$, $A^T = -A$, so that Q = exp(A)? Let $\{\lambda_1, \dots, \lambda_d\}$ denote the set of eigenvalues of Q. Since $QQ^T = I_d$, it follows that each $|\lambda_k| = 1$.

Algorithm (Matrix Logarithm)

Input: Matrix $Q \in SO(d)$.

• Determine the diagonal form $Q = VDV^*$, where V is a unitary matrix and D is the diagonal matrix of eigenvalues. Initialize $L = 0_{d \times d}$

2 Repeat:

• For each eigenvalue $\lambda_k = 1$ set:

$$E(:,k) = V(:,k)$$
, $L(k,k) = 0$

Matrix Logarithm

Algorithm-cont'ed

Algorithm

• For each group of eigenvalues $\lambda_k = \lambda_{k+1} = -1$ set E(:, k : k+1) = V(:, k : k+1) and

$$\begin{bmatrix} L(k,k) & L(k,k+1) \\ L(k+1,k) & L(k+1,k+1) \end{bmatrix} = \begin{bmatrix} 0 & \pi \\ -\pi & 0 \end{bmatrix}$$

• For each pair of eigenvalues $\lambda_k = \overline{\lambda_{k+1}} \in \mathbb{C}$ with $imag(\lambda_k) \neq 0$ determine $\varphi \in (0, 2\pi)$ so that $\lambda_k = e^{i\varphi}$ set $E(:, k) = \sqrt{2}real(V(:, k))$, $E(:, k+1) = \sqrt{2}imag(V(:, k))$ and

$$\begin{bmatrix} L(k,k) & L(k,k+1) \\ L(k+1,k) & L(k+1,k+1) \end{bmatrix} = \begin{bmatrix} 0 & \varphi \\ -\varphi & 0 \end{bmatrix}$$

3 Compute $A = ELE^T$.

Output: Matrix $A \in \mathbb{R}^{d \times d}$ so that $A^T = -A$ and Q = exp(A)Radu Balan (UMD) Registration and Matrix Log

Interpolation in the parameter space

Algorithm (Parameters Space Interpolation)

Inputs: Matrices $X, Y \in \mathbb{R}^{d \times n}$; step $\in (0, 1)$.

• Compute centers $\bar{x} = \frac{1}{n}X \cdot 1$, $\bar{y} = \frac{1}{n}Y \cdot 1$ and recenter data $\tilde{X} = X - \bar{x} \cdot 1^T$, $\tilde{Y} = Y - \bar{y} \cdot 1^T$.

2 Compute the $d \times d$ matrix $\hat{R} = \tilde{X}\tilde{Y}^{T}$;

- Compute the Singular Value Decomposition (SVD), $\hat{R} = U\Sigma V^T$, where $U, V \in \mathbb{R}^{d \times d}$ are orthogonal matrices, and $\Sigma = diag(\sigma_1, \dots, \sigma_d)$ is the diagonal matrix with singular values $\sigma_1, \dots, \sigma_d \geq 0$ on its diagonal;
- Compute $\hat{Q} = VU^T$, $\hat{a} = \frac{trace(\Sigma)}{\|\tilde{X}\|_F^2}$ and $\hat{z} = \bar{x} \frac{1}{\hat{a}}\hat{Q}^T\bar{y}$.
- Compute the diagonal matrix $J \in O(d)$ and antisymmetric matrix $A = -A^T$ so that $\hat{Q} = Jexp(A)$.

≣ । ह

Interpolation in the parameter space - cont'ed

Algorithm

• For
$$t = (0 : step : 1)$$
 repeat
• Compute $Q(t) = J \exp(tA)$; $z(t) = t\hat{z}$ and $a(t) = 1 - t + t\hat{a}$.
• Compute $X(t) = a(t)Q(t)(X - z(t)1^T)$
Outputs: $\hat{Q} = Q(1)$, $\hat{z} = z(1)$, $\hat{a} = a(1)$, and movie $(X(t))_{0 \le t \le 1}$.