
Lecture 5: Agent Based Simulations of Differential
Equations

Radu Balan

Department of Mathematics, NWC
University of Maryland, College Park, MD

Version: February 5, 2024



The Problem The Agents Based Simulation

Differential Equations
In this lecture we discuss Agent Based Simulations of differential equations
dx
dt = f (t, x). where x ∈ Rn. We shall focus on the special class Linear
Systems of Differential Equations with constant coefficients :

dx
dt = Rx , x(0) = x0

that have an additional conservation law:
d
dt (x1 + x2 + · · ·+ xn) = 0.

This last condition is equivalent to asking that the matrix RT has the
constant vector 1 in its null space: RT 1 = 0, or, equivalently, 1T R = 0,
i.e., R has a left null-vector. Indeed this is the case because:

d
dt (x1 + · · ·+ xn) = d

dt (1T x) = 1T Rx = 0
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The Problem The Agents Based Simulation

Linear Systems with Constant Coefficients
The analytic solution

The unique solution of this linear system of ODEs is given by

x(t) = eRtx(0)

where the matrix exponential eRt =
∑∞

k=0
tk

k! Rk can be computed more
easily when the matrix R diagonalizes: If R = T ΛT−1 for some invertible
matrix T ∈ Rn×n and diagonal matrix Λ (that contains its eigenvalues),
then

eRt = TeΛtT−1 , eΛt = diag(eλ1t , · · · , eλnt).

An alternative way of computing the matrix exponential is to use the
inverse Laplace transform: eRt = L−1{(sI − R)−1}|t .
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The Problem The Agents Based Simulation

Linear Systems with Constant Coefficients
The analytic solution (2)

Note the following result:

Lemma
If 1T R = 0 then 1T eRt = 1T , for every t.
Conversely, if 1T eRt = 1T , for every t then 1T R = 0.

This result is shown easily from the series definition of the matrix
exponential: if 1T R = 0 then

1T eRt = 1T (I + Rt + t2

2 R2 + t3

3! + · · · ) = 1T I + 0 + 0 + · · · = 1T

Conversely, if 1T eRt = 1T , then taking the derivative at t = 0 yields
1T R = 0.
This lemma establishes the conservation law mentioned earlier:
1T x(t) = 1T x(0) for all t, if and only if 1T R = 0.
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The Problem The Agents Based Simulation

Systems of Differential Equations
Numerical Simulations: The Euler Method

Consider the general differential equation, or system of first order differential
equations, dx

dt = f (t, x) with initial condition, x(0) = x0. Here x = x(t) ∈ Rn is a
vector-valued function. The Euler method estimates numerically the solution at
any time t > 0:

Algorithm (The Euler Method)
Inputs: The function f = f (t, x), step size h > 0, end time Tmax .

1 Initialize k = 0, t0 = 0, x0 = x(0).
2 Repeat the following steps until t ≥ Tmax :

1 Compute: v = f (tk , xk),
2 Update: xk+1 = xk + hv,
3 Update: tk+1 = tk + h,
4 Increment: k = k + 1.

Outputs: Number of iterations: last value of k (it is also equal to dTmax
h e );The

estimated solution at Tmax is the last value xk .
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The Problem The Agents Based Simulation

The Problem: Agents based Simulations

The problem we like to solve is to present a stochastic method that solves
the same differential equation. We analyze in detail the IVP dx

dt = Rx ,
x(0) = x0 ∈ (R+)n when 1T R = 0. This particular linear system of
differential equations is very much related to the SIR and SEIR models.
Our problem is to find a Markov chain with matrix of transition
probabilities Π so that it approximates well the solution x(Tmax ) at a
future time Tmax .
The strategy is to initialize a large number of “agents”, say M, each in one
of n compartments. The initial number in each compartment is
propostional to the entries of x(0). Then model is driven forward so that
at each time step agents can move from one compartment to another
according to transition probabilities in Π. After a number of steps, the
distribution of agents is converted back into a solution x(t).
Details follow in next slides.
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The Problem The Agents Based Simulation

The Compartment Model
Imagine the following scenario: There are n compartments (or, states)
indexed from 1 to n containing a total of M agents. Initially, the
compartment i has Mi (0) agents, i ∈ [n]. Differently said, Mi (0) agents
are initialized to state i (that is, in compartment i), for each i from 1 to n.
For each agent k, 1 ≤ k ≤ M, we denote by Sk(t) its state at time t.Thus
Sk(t) ∈ {1, 2, · · · , n}, for every k and t.
Assume we are given a transition probability matrix Π ∈ [0, 1]n×n, known
also as probability matrix, or stochastic matrix, or transition matrix. At
every T0 units of time (e.g., at every T0 seconds) agents can change state
(that is, move from one compartment to another) or stay in the same
state randomly according to a certain transition probability: the probability
for an agent to go from compartment i to compartment j is given by Πj,i ,
i , j ∈ [n],

Prob[Sk(t + T0) = j |Sk(t) = i ] = Πj,i , i , j ∈ [n] , k ∈ [M]
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The Compartment Model
For the matrix Π to define a probability matrix it is necessary and
sufficient that: (1) each Πi ,j ≥ 0 (i.e., non-negative entries), and (2) for
each i ∈ [n],

∑n
j=1 Πj,i = 1 (i.e., each column sums to 1). The second

condition reflects the fact that each agent has to arrive in one of existing
compartments. Hence no agent is born, or dies, in this model. The
transition diagram is rendered in Figure 1.

Figure: A rendition of the Markov chain associated to each agent: at time t + T0
the agent transitions from state i to state j with probability Πi,j .Radu Balan (UMD) MATH 420: Agent Based Simulations version: February 5, 2024



The Problem The Agents Based Simulation

The Compartment Model (2)

Let Mi (t) denote the number of agents in state i at time t. At time 0, the
initial number of agents in state i is Mi (0). The total number of agents is
M =

∑n
i=1 Mi (0) and is constant in time. Each of the M agents has a

state variable Sk(t), 1 ≤ k ≤ M, that denotes the compartment (i.e.,
state) the agent k is in at time t. For instance, at time 0, the first M1(0)
agents are in state 1, the subsequent M2(0) agents are in state 2, and so
on:

∀k ∈ [M] , Sk(0) = i if and only if
i−1∑
j=1

Mj(0) < k ≤
i∑

j=1
Mj(0)

As time evolves, agent states change and so do the number of agents in
each compartment. These states and numbers become random variables:
for each agent k, and compartment (state) i , Sk(t) and Mi (t) are random
variables, Sk(t) ∈ {1, 2, · · · , n} and Mi (t) ∈ {1, 2, · · · ,M}.
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The Problem The Agents Based Simulation

The Compartment Model (3)
For simulation of time-invariant processes (differential equations or
stochastic processes), the transition probability matrix Π is independent of
t. In general, the compartment model framework allows for modeling and
simulations of time-dependent processes.
Our first immediate goal is to find a relationship between the matrix R
that characterizes the linear system of differential equations dx

dt = Rx and
the transition matrix Π of this Compartment model so that, at every time
t that is multiple of T0, t = pT0 for some integer p ≥ 0, the expectation
of the number of agents in state i matches the exact solution at time t,
when the linear system and the Markov chain process are initialized with
the same vector (M1(0),M2(0), · · · ,Mn(0)):

E

 M1(pT0)
...

Mn(pT0)

 = eRpT0

 M1(0)
...

Mn(0)

 . (∗)
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The Compartment Model (4)
For the Markov chain depicted in Figure 1, the expectation is computed as
follows. Let Ik,i (t) denote the indicator function of whether agent k is in state
(compartment) i at time t: Ik,i (t) = 1 if Sk(t) = i , and it is 0 otherwise. Thus

Mi (t) =
M∑

k=1
Ik,i (t) ,

n∑
i=1

Ik,i (t) = 1

and:

E[Mi (t)] =
M∑

k=1
E[Ik,i (t)] =

M∑
k=1

Prob(Ik,i (t) = 1) =
M∑

k=1
Prob(Sk(t) = i).

Using the transition probability matrix Π and marginalizing the joint distribution
(Sk(t + T0), Sk(t)):

Prob(Sk(t + T0) = i) =
n∑

j=1
Prob(Sk(t + T0) = i , Sk(t) = j) =
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The Compartment Model (5)

=
n∑

j=1
Prob(Sk(t + T0) = i |Sk(t) = j)Prob(Sk(t) = j) =

n∑
j=1

Πi,jProb(Sk(t) = j)

E[Mi (t+T0)] =
M∑

k=1

n∑
j=1

Πj,iProb(Sk (t) = j) =
n∑

j=1

Πi,j

M∑
k=1

Prob(Sk (t) = j) =
n∑

j=1

Πi,jE[Mj (t)]

In matrix notation:

E

 M1(t + T0)
...

Mn(t + T0)

 = ΠE

 M1(t)
...

Mn(t)

 .
Iterating over t, we obtain:

E

 M1(pT0)
...

Mn(pT0)

 = Πp

 M1(0)
...

Mn(0)

 , p = 0, 1, 2, ... (∗∗)
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The Compartment Model (5)
Comparing (*) and (**) we observe that equation (*) is satisfied if:

Π = eT0R .

One natural question: what properties of R imply that eT0R is a
probability transition matrix?
The following result answers this question1.

Proposition
Let R be a n × n matrix with real entries. The following are equivalent:

1 For every τ ≥ 0, eτR is a transition probability matrix, i.e., has
non-negative entries, and each column sums to one.

2 The matrix R satisfies two conditions:
1 Every off-diagonal element of R is non-negative: ∀i 6= j , Ri,j ≥ 0.
2 Constant vector 1 is a right null-vector for RT : RT 1 = 0.

1condition 2.2 was discussed earlier
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The Compartment Model (6)
Why the Proposition?

⇒
Assume eτR defines a probability matrix for every τ ≥ 0. Thus: 1T eτR = 1T

(each columns sums to 1). Take derivative with respect to τ at τ = 0 and obtain:
1T R = 0. Hence RT 1 = 0.
On the other hand, for small τ > 0, eτR ≈ I + τR. Hence, if Ri,j < 0 for some
i 6= j , then the (i , j) entry of eτR will be negative for small enought τ .
Contradiction. Hence all off-diagonal entries in R must be non-negative.
⇐
Assume RT 1 = 0 and Ri,j ≥ 0 for all i 6= j . First note 1T R = 0 and 1T Rk = 0 for
all k = 1, 2, 3, .... Using the power series for the matrix exponential, obtain that

1T eτR = 1T

(
I +

∞∑
k=1

τ k

k! Rk

)
= 1T I = 1T

Thus each column of eτR sums to one.
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The Compartment Model (7)
Why the Proposition? (cont’ed)

Assume now that Ri,j ≥ 0 for all i 6= j . Choose a real α large enough so that the
matrix R + αI has all entries non-negative. Using the power series formula deduce
that eτ(R+αI) has non-negative entries. But R = (R + αI)− αI and

eτR = eτ(R+αI)e−ατ I = eτ(R+αI)diag(e−ατ ) = e−ατeτ(R+αI)

where the entries in the last matrix are all non-negative. Thus eτR has
non-negative entries.
�

Radu Balan (UMD) MATH 420: Agent Based Simulations version: February 5, 2024



The Problem The Agents Based Simulation

How to simulate an Agent based Model

Assume you know the transition matrix Π and the initial population of agents
(M1(0), · · · ,Mn(0)).
Initialize agent states accordingly, S1(0), · · · , SM(0) ∈ [n].
For each i ∈ [n], pre-compute and save in hash tables a1,i = 0, b1,i = Π1,i ,
a2,i = b1,i , b2,i = b1,i + Π2,i , a3,i = b2,i , b3,i = b2,i + Π3,i and so on until
an,i = 1− Πn,i , bn,i = 1.

At each time step t = pT0, for each agent k ∈ [M]:

Draw a random variable z uniformly distributed in [0, 1).

If Sk(t) = i , then find j ∈ [n] so that z ∈ [aj , bj).

Assign Sk(t + T0) = j .

Repeat until reach end of simulation time Tmax .
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