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Epidemiological Models

In this lecture we continue discussing epidemiological models. There are
two main types of epidemic models:

deterministic (or, compartimental) model
stochastic (e.g., agent based) model

We focus on three deterministic models:
1 SI (Susceptible-Infected) Model
2 SIR (Susceptible-Infected-Removed) Model
3 SEIR (Susceptile-Exposed-Infected-Removed) Model

Today we discuss the SIR model.
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The SIR Model with No vitals
Assume a system with three compartments: ‘Susceptible’ (S), ‘Infected’
(I) and ‘Removed’ or ‘Recovered’ (R). At time t0 = 0 the system has a
total of N individuals (initial total population). Most of them are
susceptible S(0), but some are infected, I(0) and possibly some are in the
recovered state, R(0). Our intention is to model the time evoluation of
these populations. We start with SI model:{

dS
dt = −βS I

N , S(0)
dI
dt = βS I

N , I(0)

where β ≥ 0 is a parameter. We append a new term to model transition
from I 7→ R, assuming a constant rate of transition α:

dS
dt = −βS I

N , S(0)
dI
dt = βS I

N − αI , I(0)
dR
dt = αI , R(0)
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The SIR Model
Deterministic simulations

Simulation of the SIR model:

β = 2 , α = 1 , S(0) = 2000 , I(0) = 23 , R(0) = 0

Results were obtained with an Euler scheme with step size h = 0.01.
Note: The infected population I(t) first
increases and then decreases eventually
to 0. The susceptible population de-
creases, but converges to some limiting
value S(∞) > 0. The removed popu-
lation is monotone increasing and con-
verges to some value R(∞) < N. Some
of the susceptible population who do not
get infected are protected by the recov-
ered population surrounding them. This
is known as herd immunity.
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The SIR Model
Deterministic simulations (2)

Initial conditions: S(0) = 2000, I(0) = 23, R(0) = 0.
β = 1 , α = 1. β = 5 , α = 1.
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The SIR Model: The normalized form

For reasons of normalizations, we prefer to compute fractions of
susceptible population, infected population, and of removed population:

s(t) = S(t)
N , i(t) = I(t)

N , r(t) = R(t)
N

In which case the model becomes:
ds
dt = −βsi , s(0) = S(0)

N
di
dt = βsi − αi , i(0) = I(0)

N
dr
dt = αi , r(0) = R(0)

N

(SIR Model)

Note s(t) + i(t) + r(t) = 1 for all t (conservation of total population).
The bad news: there is no closed form solution. The good news: some
relationships can be expressed in closed form.

Radu Balan (UMD) MATH 420: SIR version: February 16, 2024



Epidemiological Models The SIR Model

The SIR Model: Numerical solution vs. Agent Based
Modeling
Similar to the SI model, one way of implementing an agent based
simulation is to pretend the nonlinear term is linear in s β̃(t) = βi(t).
Thus the rate matrix is given by

d
dt

 s
i
r

 = A

 s
i
r

 , A =

 −βi 0 0
βi −α 0
0 α 0


and for a discretization step T0, at time step p > 0, the transition matrix
to transition from time (p − 1)T0 to pT0 with ip−1 = i((p − 1)T0) is given
by

Π(p) =


e−βT0ip−1 0 0

βip−1
α−βip−1

e−βT0ip−1 − βip−1
α−βip−1

e−αT0 e−αT0 0
1− α

α−βip−1
e−βT0ip−1 + βip−1

α−βip−1
e−αT0 1− e−αT0 1

 , p = 1, 2, ...
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The SIR Model: Numerical solution vs. Agent Based
Modeling (2)
At every time step, the transition matrix can be approximated by the first order term in
etA ≈ I + tA:

Π(p)
E =

[ 1− βT0ip−1 0 0
βT0ip−1 1− αT0 0

0 αT0 1

]
This matrix has a direct interpretation, and allows for a more flexible implementation.
for instance, for the transition S → I at time step p (i.e., from time (p − 1)T0 to time
pT0):

If State(Agent k at time (p − 1)T0) = Susceptible then:
1 Draw a random variable u distributed uniformly over the set of all

agents, u ∼ U{1, 2, ...,M}.
2 If State(Agent u at time (p − 1)T0) = Infected then:

1 Draw a random number z ∼ U[0, 1] uniformly distributed in [0, 1].
2 If z ∈ [1− βT0, 1] then State(Agent k at time pT0) = Infected .
3 Otherwise State(Agent k at time pT0) = Susceptible

3 Otherwise State(Agent k at time pT0) = Susceptible.
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The SIR Model: Numerical Solution vs. Agent Based Modeling (3)

Figure: Results over 1000 simulations for T0 = 0.01, with parameters β = 2 and α = 1.
The shaded area has semiwidth of one std of simulations. Top row utilizes the
exponential matrix; the bottom row utilizes the linearized approximation for the
transition matrix. The Euler scheme has a stepsize h = 0.001.
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The SIR Model: Numerical Solution vs. Agent Based Modeling (4)

Figure: Results over 1000 simulations for T0 = 0.001, with parameters β = 2 and
α = 1. The shaded area has semiwidth of one std of simulations. Top row utilizes the
exponential matrix; the bottom row utilizes the linearized approximation for the
transition matrix. The Euler scheme has a stepsize h = 0.001.
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The SIR Model: Numerical Solution vs. Agent Based Modeling (5)

Figure: Results over 1000 simulations for T0 = 1.0, with parameters β = 2 and α = 1.
The shaded area has semiwidth of one std of simulations. Top row utilizes the
exponential matrix; the bottom row utilizes the linearized approximation for the
transition matrix. The Euler scheme has a stepsize h = 0.001.
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The SIR Model
Analytic expressions

For the normalized systems of equations, divide the equation for i by
equation for s and use chain rule:

di
ds = −1 + α

β

1
s

The ratio R0 = β
α is known as the reproduction ratio, or the contact

number. Its meaning: β represents the number of close contacts per day
per one infected individual; 1

α is the average infectious period (or, the
average number of days an infected person remains contagious). Hence R0
represents the average number of close contacts per infected individual.
Use separability of this Diff Eq. and integrate both sides:

i(t)− i(0) = s(0)− s(t) + 1
R0

(log(s(t))− log(s(0)))

Thus i + s − 1
R0

log(s) must stay constant over time.
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The SIR Model
Analytic calibrations

We obtained that i + s − 1
R0

log(s) must stay constant over time.
Approximation: At time t = 0, s(0) ≈ 1 (assuming little infections and
recovered people) and i(0) ≈ 0 (very few infected people compared to the
total population).

i(t) + s(t)− 1
R0

log(s(t)) = 1

What happens for t →∞?
One thing for sure: i(∞) = 0. What happens with s(∞)? We obtain the
following equations:

1 = s(∞)− 1
R0

log(s(∞))

R0 = log(s(∞))
s(∞)− 1
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The SIR Model
Herd Immunity

With the approximation i(0) =
0, s(0) = 1, the plot of
log(s(∞))/(s(∞)−1) as function of
s(∞) is rendered in the left figure.
For instance, if the contact number is
R0 = 2, then s(∞) ≈ 0.2. Thus 20%
of population get protection from the
80% who have gotten infected and
recovered.

But what happens if R0 < 1 ?
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The SIR Model
Herd Immunity

With the approximation i(0) =
0, s(0) = 1, the plot of
log(s(∞))/(s(∞)−1) as function of
s(∞) is rendered in the left figure.
For instance, if the contact number is
R0 = 2, then s(∞) ≈ 0.2. Thus 20%
of population get protection from the
80% who have gotten infected and
recovered.

But what happens if R0 < 1 ?
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The SIR Model
Herd Immunity (2)

In reality, i(0) > 0 and s(0) < 1. Assume that still r(0) = 0, thus
s(0) + i(0) = 1, but log(s(0)) < 0. We obtain:

i(t)+s(t)− 1
R0

log(s(t)) = 1− log(s(0))
R0

⇒ R0 = log(s(∞))− log(s(0))
s(∞)− 1

For s(0) = 2000/2023 we obtain the
left plot. For R0 >> 1, the previous
approximation is still good.
For R0 < 1, it follows that a signifi-
cant number of susceptible individual
do not get infected.
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SIR Model with Two Outcomes
Since I(t), or i(t), is not monotone increasing sequence, the SIR model is
appropriate for the time series of the daily rates of the number of infections. On
the hand, the removed sequence R(t), or r(t), is monotone increasing. The
“removed” compartment contains only two types of individuals: (1) individuals
that recovered and gained full immunity X (t), (so they will never get infected
again), and (2) people who died, Y (t). Thus R(t) = X (t) + Y (t).
Assumption 1: Y (t) = γR(t) for all t. In other words, a fixed fraction γ of
people who get infected eventually die, with the same infectious period as the
individuals that eventually recovered and gained immunity:

dS
dt = −βS I

N , S(0)
dI
dt = βS I

N − αI , I(0)
dX
dt = (1− γ)αI , X (0) = (1− γ)R(0)
dY
dt = γαI , Y (0) = γR(0)

Note: For obtaining (S, I,X ,Y ) you need only to solve the SIR system and find
S(t), I(t),R(t)), and then allocate, X (t) = (1− γ)R(t) and Y (t) = γR(t).
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Two-outcome SIR Model Analysis
The two-outcome SIR model has the form:

dS
dt = −βS I

N , S(0)
dI
dt = βS I

N − αI , I(0)
dX
dt = (1− γ)αI , X (0) = (1− γ)R(0)
dY
dt = γαI , Y (0) = γR(0)

Its normalized form in variables s, i , r , x = X
N , y = Y

N is given by:
ds
dt = −βsi , s(0) = S(0)

N
di
dt = βsi − αi , i(0) = I(0)

N
dx
dt = (1− γ)αi , x(0) = (1− γ) R(0)

N
dy
dt = γαi , y(0) = γ R(0)

N

Note the conservation laws: N = S(t) + I(t) + X (t) + Y (t),
s(t) + i(t) + x(t) + y(t) = 1. The deterministic system is initialzed by
(S(0), I(0),R(0)) and its evolution is determined by the choice of three
parameters: (α, β, γ). X (t) and Y (t) are computed from R(t)
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SIR Model Analysis
The three parameters have the following meaning:

1 β represents the number of close contacts per day per one infected
individual; differently said, it is the probability of disease transmission per
contact(dimensionless) times the number of contacts per unit of time. Unit:
day−1

2 α is the removing rate of infectious individuals; its reciprocal is the
infectious period. If no death, α represents the recovery rate from infections.
Unit: day−1

3 γ represents the probability of a fatal infection (death) once an individual
gets infected. Unit: dimensionless.

R0 = β
α is the reproduction ratio (or, the contact number) and represents the

average number of infections caused by one infected individual.
Note: α and γ are parameters that characterize the infectious disease and cannot
be controlled. Instead, β and ρ depend on human interactions, and therefore can
be controlled by society/individuals (e.g., during a complete shut-down, β ≈ 0).
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SIR Model Calibration: LSE
For calibration and testing we are using two pieces of measured data: the daily
infection rates, {I(0), · · · , I(Tmax )}, and the time series of cumulative deaths,
{Y (0), · · · ,Y (Tmax )}. Note that, if we know γ and N we can compute
R(0) = Y (0)

γ and S(0) = N − I(0)− R(0). At the onset of an infectious disease it
is the likely the case that R(0) = Y (0) = 0 and I(0) is small and given by the
first detected cases. Then S(0) = N.
Assumption 2: The time series of detected infections undercounts the actual
number of infections. Specifically we assume I(t) ≈ ρIsim(t), where ρ ≤ 1 is a
parameter that represents the undercounting factor.
The least-squares estimator (LSE) finds parameters α, β, γ, ρ that minimize:

minimize
α, β, γ, ρ ≥ 0
γ, ρ ≤ 1

I(α, β, γ, ρ) := cI

Tmax∑
t=0

(I(t)−ρIsim(t))2 +cY

Tmax∑
t=0

(Y (t)−γRsim(t))2.

Weights cI , cY ≥ 0 are chosen by user depending on how accurate are the two
measured time series. If infections go unreported, set cI = 0, cY = 1.
Alternatively, choose cI = cY = 1.
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SIR Model Calibration: LSE (2)

The procedure works like this: (Ssim(t), Isim(t),Rsim(t)) are simulated with a
numerical solver for the SIR model with parameters (α, β) initialized at
(S(0), I(0),R(0)). Parameters γ and ρ are then obtained by solving two
independent optimization problems:

ρ̂ = argmin
0 ≤ ρ ≤ 1

Tmax∑
t=0

(I(t)− ρIsim(t))2 , γ̂ = argmin
0 ≤ γ ≤ 1

Tmax∑
t=0

(Y (t)− γRsim(t))2

Then compute the objective function J(α, β) = I(α, β, γ̂, ρ̂) and minimize over
the set of pairs (α, β) used in simulations.
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SIR Model with Vitals

A simple modification of the SIR vanilla model is to consider vital signals,
such as births and deaths at separate processes. In normalized form this
becomes:

ds
dt = Λ

N − βsi − µs , s(0) = S0
N

di
dt = βsi − αi − µi , i(0) = I0

N
dr
dt = αi − µr , r(0) = R0

N

(SIR Model)

where Λ ≥ 0 is the constant source of births (=number of births/day) and
µ ≥ 0 is the natural death rate (i.e., in the absence of this virus). Its
reciprocal 1/µ represents the average life expectancy.
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