Lecture 9: Full Calibration of SIR Models

Radu Balan

Department of Mathematics, NWC University of Maryland, College Park, MD

Version: February 27, 2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

SIR Model Calibration

Recall the model:

$$\begin{array}{rcl} \frac{dS}{dt} &=& -\beta S \frac{I}{N} \ , \ S(0) \\ \frac{dI}{dt} &=& \beta S \frac{I}{N} - \alpha I \ , \ I(0) \\ \frac{dR}{dt} &=& \alpha I \ , \ R(0) \end{array}$$

with the sub-compartments $X(t) = (1 - \gamma)R(t)$ for "recovered" and $Y(t) = \gamma R(t)$ for deaths.

Before making useful predictions (testing), the model has to be calibrated. Last time we analyzed estimators for γ from the time series of *cumulative detected infections*, { $V(0), \dots, V(T_{max})$ }, and the time series of *cumulative deaths*, { $Y(0), \dots, Y(T_{max})$ }. The idea was to minimize over $\tau \ge 0, \gamma \in [0, 1]$ the norm $||Y(\cdot + \tau) - \gamma V||_p$, scaled by the number of terms in each sum. Now we integrate these estimators into a scheme that performs full calibration of the SIR model.

Radu Balan (UMD)

Optimization based on Forward Model Simulation

Pre-processing steps

Step 1: t_0 . First detect the onset of infections, and reset the time origin to match this starting time t_0 .

Step 2: I(t). The time series of cumulative detected infections $\{V(0), \dots, V(T_{max})\}$ should be turned into a rate of infections. The daily rate may not be relevant to infection transmissions. Instead use a time window to convert the cumulative count into a rate:

$$I(t) = V(t + t_0 + \tau_0) - V(t + t_0 - \tau_0)$$
, $t = 0, 1, 2, \cdots, T_{max}$

where $\tau_0 > 0$ is chosen so that τ_0 accounts for average infection period. For Covid-19 it is somewhere between 5 days and 10 days. A possible value is $\tau_0 = 7$. Thus I(t) measures the number of invections in a 2-week period centered around t.

Step 3: $Y_{measured}$. Align the time series of cumulative death with the onset time t_0 :

$$Y_{measured}(t)=Y(t+t_0)~,~t=0,1,2,\cdots,T_{max}.$$

Optimization based on Forward Model Simulation The Meta Loop

A natural choice for initial conditions is given by: S(0) = N and R(0) = 0, where we assumed $I(0) \ll N$:

$$\begin{cases} \frac{dS_{sim}}{dt} = -\beta S_{sim} \frac{I_{sim}}{N} , S_{sim}(0) = N \\ \frac{dI_{sim}}{dt} = \beta S_{sim} \frac{I_{sim}}{N} - \alpha I , I_{sim}(0) = I(0) > 0 \\ \frac{dR_{sim}}{dt} = \alpha I_{sim} , R_{sim}(0) = 0 \\ Y_{sim} = \gamma R_{sim} \end{cases}$$

At this point, the parameters that need to be estimated are: $\{\alpha, \beta, \gamma\}$. The Forward Model based calibration works like this:

1. Construct a search set Ω of the "free" parameters (α, β)

2. For each pair $(\alpha, \beta) \in \Omega$: (i) run the forward SIR model using an Euler scheme that produces $(S_{sim}, I_{sim}, R_{sim})$. (ii) Fit $\hat{\gamma}$ to match the observed time series $Y_{measured}$. (iii) Fit $\hat{\rho}$ that measures the undercounting factor in detected infections *I*. (iv) Compute the value of the objective function $J_{\rho}(\alpha, \beta, \hat{\gamma}, \hat{\rho})$.

3. Select $(\hat{\alpha}, \hat{\beta}, \hat{\gamma}, \hat{\rho})$ that minimize J_{ρ} .

Optimization based on Forward Model Simulation

Details: The objective function

The objective function J_p is chosen to measure residuals $I - \rho I_{sim}$ and $Y_{measured} - Y_{sim}$. Fix cost coefficients c_I and c_Y . For $1 \le p < \infty$ define

$$J_{p}(\alpha,\beta,\gamma,\rho) = c_{I} \sum_{t=0}^{T_{max}} |I(t) - \rho I_{sim}(t)|^{p} + c_{Y} \sum_{t=0}^{T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)|^{p}$$

For $p = \infty$ define

$$J_{\infty}(\alpha, \beta, \gamma, \rho) = c_{I} \max_{0 \le t \le T_{max}} |I(t) - \rho I_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le t \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le T_{max}} |Y_{measured}(t) - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le T_{max}} |Y_{max} - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le T_{max}} |Y_{max} - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le T_{max}} |Y_{max} - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le T_{max}} |Y_{max} - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le T_{max}} |Y_{max} - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le T_{max}} |Y_{max} - \gamma R_{sim}(t)| + c_{Y} \max_{0 \le T_{max}} |Y_{max} - \gamma R_$$

Typical choices: $p = 1, 2, \infty$ and $(c_I, c_Y) = (0, 1)$ (if the cumulative detected infections are unreliable) or $(c_I, c_Y) = (1, 1)$ (if detected infections is a reliable measure).

Radu Balan (UMD)

The Calibration Algorithm for SIR Models Algorithm (Meta-Algorithm for SIR Calibration)

Inputs: Time series $\{V(0), \dots, V(T)\}$, $\{Y(0), \dots, Y(T)\}$. Parameters: V_{min} (default, $\overline{V_{min}} = 5$), τ_0 (default, $\tau_0 = 7$), N = Population, $p \in [1, \infty]$ (default, p = 2), $c_l, c_Y > 0$. Search set Ω .

1 Detect the onset of the infection t_0 as the first time so that $V(t_0) \ge V_{min}$, reset the time origin, and create the time series of infection rates $I(t) = V(t + t_0 + \tau_0) - V(t + t_0 - \tau_0)$, and aligned cumulative death $Y_{measured}(t) = Y(t + t_0), \ 0 \le t \le T_{max}$.

2 For each $(\alpha, \beta) \in \Omega$ repeat:

• Simulate a SIR model with parameters (α, β) and initial condition $S_{sim}(0) = N$, $I_{sim}(0) = I(0)$, $R_{sim}(0) = 0$, and obtain daily time series $(S_{sim}, I_{sim}, R_{sim})$.

2 Solve
$$\hat{\gamma} = \operatorname{argmin}_{\gamma} \| Y_{\text{measured}} - \gamma R_{\text{sim}} \|_{p}$$
.

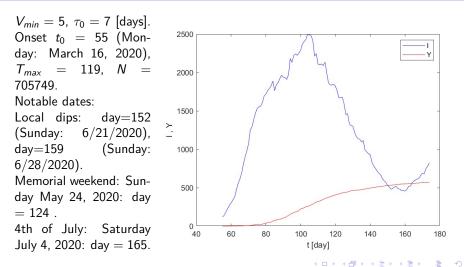
3 Solve
$$\hat{\rho} = \operatorname{argmin}_{\rho} \|I - \rho I_{sim}\|_{\rho}$$

3 Compute the objective function $J = J_p(\alpha, \beta, \hat{\gamma}, \hat{\rho})$.

3 Determine the minimum and the minimizer of J. Outputs: Estimated $\hat{\alpha}, \hat{\beta}, \hat{\gamma}, \hat{\rho}$ and minimum value J_{min} .

Numerical results (1)

Analysis of DC data for 2020



Radu Balan (UMD)

Numerical results (2) Analysis of DC data for 2020. p = 1, $c_I = 0$, $c_Y = 1$

3000

Results: $\hat{\alpha} = 0.5, \ \hat{\beta} = 0.62,$

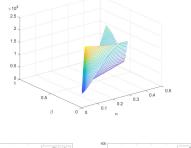
$$\hat{R_0} = 1.24$$
,

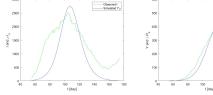
 $\hat{\gamma} = 0.21\%$.

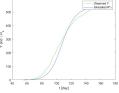
$$\hat{
ho} = 19\%$$

 $J_{optim} = 2690.$

J=J(alpha.beta.gamma=0.002104.rho=0.192764) for cl=0.000000, cY=1.000000







MATH 420: SIR Calibration

 $\times 10^{6}$

Numerical results (3) Analysis of DC data for 2020. p = 2, $c_l = 0$, $c_Y = 1$

J=J(alpha,beta,gamma=0.001950,rho=0.183072) for cl=0.000000, cY=1.000000

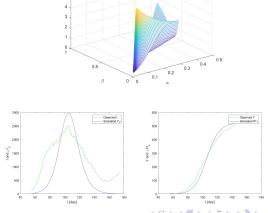
Results: $\hat{\alpha} = 0.49, \ \hat{\beta} = 0.617$

 $\hat{R_{0}} = 1.26$,

 $\hat{\gamma} = 0.195\%.$

 $\hat{
ho}=18\%$

 $J_{optim} = 89365.$



MATH 420: SIR Calibration

Numerical results (4) Analysis of DC data for 2020. $p = \infty$, $c_I = 0$, $c_Y = 1$

J=J(alpha,beta,gamma=0.001944,rho=0.220337) for cl=0.000000, cY=1.000000

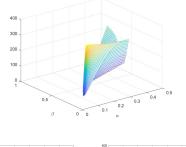
Results: $\hat{\alpha} = 0.5$, $\hat{\beta} = 0.63$,

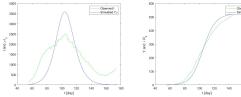
 $\hat{R_0} = 1.26$,

 $\hat{\gamma} = 0.19\%.$

 $\hat{
ho} = 22\%$

 $J_{optim} = 44.98.$





MATH 420: SIR Calibration

Numerical results (5) Analysis of DC data for 2020. p = 1, $c_l = 1$, $c_Y = 1$

Results: $\hat{\alpha} = 0.5, \ \hat{\beta} = 0.61,$

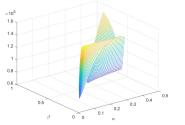
$$\hat{R_0} = 1.22$$
,

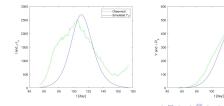
 $\hat{\gamma} = 0.23\%$.

$$\hat{
ho} = 22\%$$

 $J_{optim} = 67250.$

J=J(alpha,beta,gamma=0.002310,rho=0.218467) for cl=1.000000, cY=1.000000





MATH 420: SIR Calibration

Numerical results (6) Analysis of DC data for 2020. p = 2, $c_l = 1$, $c_Y = 1$

Results: $\hat{\alpha} = 0.5, \ \hat{\beta} = 0.62$

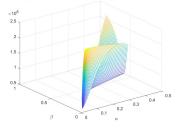
$$\hat{R_0} = 1.24$$
,

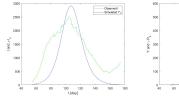
 $\hat{\gamma} = 0.21\%$.

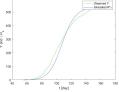
 $\hat{
ho} = 20\%$

 $J_{optim} = 48340173.$

J=J(alpha,beta,gamma=0.002109,rho=0.204360) for cl=1.000000, cY=1.000000







MATH 420: SIR Calibration

Numerical results (7)

Analysis of DC data for 2020. $p = \infty$, $c_l = 1$, $c_Y = 1$

Results: $\hat{\alpha} = 0.5$, $\hat{\beta} = 0.64$,

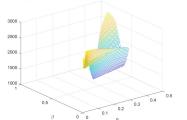
$$\hat{R_{0}} = 1.28$$
,

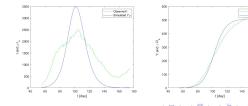
 $\hat{\gamma} = 0.18\%.$

 $\hat{
ho} = 19\%$

 $J_{optim} = 1232.$

J=J(alpha,beta,gamma=0.001789,rho=0.190301) for cl=1.000000, cY=1.000000





MATH 420: SIR Calibration

Next Model: SEIR

The Susceptible-Exposed-Infected-Removed (SEIR) model is obtained from SIR by introducing a compartment between Susceptible and Infected of population that has been exposed to the virus but are not yet contagious:

$$\begin{cases} \frac{dS}{dt} = -\beta \frac{SI}{N} , S(0) \\ \frac{dE}{dt} = \beta \frac{SI}{N} - \delta E , E(0) \\ \frac{dI}{dt} = \delta E - \alpha I , I(0) \\ \frac{dR}{dt} = \alpha I , R(0) \end{cases}$$
(SEIR Model)

where $\delta \ge 0$ is the rate of transition from exposed to infected. Its reciprocal $1/\delta$ represents the *average incubation period*. If data is selected from the onset of infections, a natural initial condition is: $R(0) = N \gg I(0)$, R(0) = 0. The initial exposed population E(0) may be set to I(0), or can be fine tuned to fit the data. Assumin E(0) = I(0) is known, the parameters that need to be calibrated are: $\alpha, \beta, \gamma, \delta, \rho$.