Lecture: Optimizations and Matrix Analysis

Radu Balan

Department of Mathematics, AMSC, CSCAMM and NWC University of Maryland, College Park, MD

March 3, 2024

Convex Sets. Convex Functions

A set $S \subset \mathbb{R}^{n}$ is called a convex set if for any points $x, y \in S$ the line segment $[x, y]:=\{t x+(1-t) y, 0 \leq t \leq 1\}$ is included in $S,[x, y] \subset S$.

A function $f: S \rightarrow \mathbb{R}$ is called convex if for any $x, y \in S$ and $0 \leq t \leq 1$, $f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$.
Here S is supposed to be a convex set in \mathbb{R}^{n}.
Equivalently, f is convex if its epigraph is a convex set in \mathbb{R}^{n+1}. Epigraph: $\{(x, u) ; x \in S, u \geq f(x)\}$.

A function $f: S \rightarrow \mathbb{R}$ is called strictly convex if for any $x \neq y \in S$ and $0<t<1, f(t x+(1-t) y)<t f(x)+(1-t) f(y)$.

Convex Optimization Problems

The general form of a convex optimization problem:

$$
\min _{x \in S} f(x)
$$

where S is a closed convex set, and f is a convex function on S.
Properties:
(1) Any local minimum is a global minimum. The set of minimizers is a convex subset of S.
(2) If f is strictly convex, then the minimizer is unique: there is only one local minimizer.

In general S is defined by equality and inequality constraints:
$S=\left\{f_{i}(x) \leq 0,1 \leq i \leq m\right\} \cap\left\{h_{j}(x)=0,1 \leq j \leq p\right\}$. Typically h_{j} are required to be affine: $h_{j}(x)=a^{T} x+b$.

Primal-Dual Problems

Consider the primal optimization problem:

$$
\begin{gathered}
p^{*}=\begin{array}{c}
\text { minimize } \\
\text { subject to }
\end{array} f_{0}(x) \\
\\
f_{i}(x) \leq 0, \quad i \in[m] \\
\\
h_{j}(x)=0, j \in[p]
\end{gathered}
$$

Its associated dual problem is constructed by computing first the Lagrange dual function (known also as dual function):

$$
g(\lambda, \nu)=\inf _{x \in \operatorname{Dom}}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{j=1}^{p} \nu_{j} h_{j}(x)\right)
$$

and the dual optimization problem:

$$
\begin{aligned}
& d^{*}=\quad \text { maximize } \quad g(\lambda, \nu) \\
& \text { subject to } \\
& \lambda_{i} \geq 0, i \in[m] \\
& \nu_{j} \in \mathbb{R}, j \in[p]
\end{aligned}
$$

Primal-Dual Problems (2)

Regardless of whether the primal problem is convex or not, always:

$$
d^{*} \leq p^{*}
$$

Hence the dual problem provides a lower bound of the optimum objective function. An obvious upper bound is given by $f_{0}\left(x_{f}\right)$ for any feasible x, i.e., one that satisfies the constraints $f_{i}\left(x_{f}\right) \leq 0$ and $h_{j}\left(x_{f}\right)=0$. When $d^{*}=p^{*}$ we say that strong duality holds. Some conditions (Slater's constraint qualification) guarantee strong duality.

Convex Programs

The hiarchy of convex optimization problems:
(1) Linear Programs: Linear criterion with linear constraints
(2) Quadratic Programs: Quadratic Criterion with Linear Constraints; Quadratically Constrained Quadratic Problems (QCQP); Second-Order Cone Program (SOCP)
(3) Semi-Definite Programs(SDP)

Typical SDP:

$$
\begin{gathered}
\quad \min _{X} \\
\operatorname{trace}\left(X B_{k}\right)=y_{k}, 1 \leq k \leq p \\
\operatorname{trace}\left(X C_{j}\right) \leq z_{j}, 1 \leq j \leq m
\end{gathered}
$$

CVX

Matlab package

Downloadable from: http://cvxr.com/cvx/ . Follows "Disciplined" Convex Programming - à la Boyd [1].
m = 20; n = 10; p = 4;
$\mathrm{A}=\operatorname{randn}(\mathrm{m}, \mathrm{n}) ; \mathrm{b}=\operatorname{randn}(\mathrm{m}, 1)$;
C = randn(p,n); d = randn(p,1); e = rand;
cvx_begin
$\begin{array}{lc}\text { variable } \mathrm{x}(\mathrm{n}) ; & \min ^{\ln } \quad\|A x-b\| \\ \text { minimize }(\operatorname{norm}(\mathrm{A} * \mathrm{x}-\mathrm{b}, 2)) & C X=d \\ \text { subject to } & \|x\|_{\infty} \leq e\end{array}$
C * $\mathrm{x}=\mathrm{d}$;
norm(x, Inf) <= e;
cvx_end

CVX

SDP Example

$\mathrm{n}=10$;
$\mathrm{E} 1=\operatorname{randn}(\mathrm{n}, \mathrm{n}) ; \mathrm{d} 1=\operatorname{randn}(\mathrm{n}, 1) ;$
$\mathrm{E} 2=\operatorname{randn}(\mathrm{n}, \mathrm{n}) ; \mathrm{d} 2=\operatorname{randn}(\mathrm{n}, 1)$;
epsx = 1e-1;
cvx_begin sdp
variable $X(n, n)$ semidefinite; minimize trace (X)
minimize trace(X);
subject to
X*ones(n,1) == zeros(n,1);
abs (trace (E1*X)-d1) <=epsx; subject to $X=X^{T} \geq 0$
$X \cdot 1=0$
$\left|\operatorname{trace}\left(E_{1} X\right)-d_{1}\right| \leq \varepsilon$
$\left|\operatorname{trace}\left(E_{2} X\right)-d_{2}\right| \leq \varepsilon$
cvx_end

References

S. Boyd, L. Vandenberghe, Convex Optimization, available online at: http://stanford.edu/ boyd/cvxbook/

