Random Graphs: Block Partitions and Embeddings

In this project you will apply the techniques for random graphs model selection and community detection on a specific data set.

The following files are assigned to your team:

- sgb128Nodes*to*_coord.txt : Coordinates of a set of 40 points (cities) taken from SGB128 dataset; This text file has the following format:

```
First line: X(1) Y(1) Z(1)
Second line: X(2) Y(2) Z(2)
Last line: X(n) Y(n) Z(n)
```

Note: all Z coordinates are 0 . You can discard them.

- sgb128Nodes*to*_weight.txt : A symmetric matrix of weights defined by $V(i, j)=\exp (-6 \operatorname{dist}(i, j) / \max D)$, for $i \neq j$, where $\operatorname{dist}(i, j)$ is the Euclidean distance between city i and city j, and $\max D=\max _{i, j} d(i, j)$ is the largest distance in the graph. This text file has the following format:

```
First line: n
Second line: V(1,1) V(1,2) V(1,3) ... V(1,n)
Third line: V(2,1) V(2,2) V(2,3) ... V(2,n)
Line n+1: V (n,1) V(n,2) V(n,3) ... V (n,n)
```

- sgb128Nodes*to*_weight20.txt : a weight matrix W obtained by threshlding V to 20% of its maximum entry. Thus, if $V(i, j) \geq 0.2 \max (V)$ then $W(i, j)=V(i, j)$; otherwise $W(i, j)=0$. Note: there are abut $40-45 \%$ non-zero entries. This text file has the following format:

First line: n m
Second line: $W(1,1)$ W(1,2) $W(1,3) \ldots W(1, n)$
Third line: $W(2,1) \quad W(2,2) W(2,3) \ldots W(2, n)$
Line $n+1$: $W(n, 1) \quad W(n, 2) \quad W(n, 3) \quad \ldots \quad W(n, n)$

- sgb128Nodes*to*_adj20.txt : The adjacency matrix A associated to W : $A(i, j)=1$ iff $W(i, j)>0$. Note: the number of edges is equal to the number of non-zero entries in the upper traingle of W; This text file has the following format:

```
First line: n m
Second line: A(1,1) A(1,2) A(1,3) ... A(1,n)
Third line: A(2,1) A(2,2) A(2,3) ... A(2,n)
Line n+1: A(n,1) A(n,2) A(n,3) ... A(n,n)
```

- sgb128_name.txt: List of names from the SGB128 file. Your cities are NodeX to Node Y where X and Y are taken from the file: sgb128NodesXtoY_coord.txt. Note: there are 128 names; your city names are only city X to city Y

On this dataset perform the following three tasks:
I. Random graph model testing: For this task use the full weight matrix V.

1. Order edges according to their weight. For this, create a matrix E of size $n(n-1) / 2 \times 2$ that contains the ordered list of edges so that ($\mathrm{E}(1,1), \mathrm{E}(1,2))$ is an edge with the largest weight;
2. Loop with k from 2 to $n(n-1) / 2$ and for each k, perform the following tasks on the set of first k edges, $E(1: k, 1: 2)$:
(a) compute the actual number of 3 -cliques $q 3(k)$ and 4 -cliques $q 4(k)$;
(b) Under the Erdos-Renyi random graph model, estimate the parameter p. Compute the estimated number of 3 -cliques and 4 -cliques (under the Erdos-Renyi model), say $E R 3(k)$ and $E R 4(k)$;
(c) Under the SSBM random graph model, estimate the parameters a and b based on the number of vertices, edges, and 3-cliques, using the Modified Constrained Moment Matching Algorithm 2. Compute the estimated number of 3 -cliques and 4 -cliques (under the SSBM model), say $\operatorname{SSBM3}(k)$ and $\operatorname{SSBM4}(k)$;
3. Plot $q 3, E R 3$ and $S S B M 3$ on the same plot. Estimate the amplitude C and exponent r from the power law $y(k) \sim C k^{r}$ by a linear fit in the $\log -\log$ plot, after you discard the first, say 10 entries. Call $C_{3, E R}, r_{3, E R}$ and $C_{3, S S B M}, r_{3, S S B M}$ the respective parameters.
4. Plot $\log (q 3), \log (E R 3)$ and $\log \left(C_{3, E R}\right)+r_{3, E R} \log (k)$ on same figure over the range of k utilized to estimate the exponent.
5. Plot $\log (q 3), \log (S S B M 3)$ and $\log \left(C_{3, S S B M}\right)+r_{3, S S B M} \log (k)$ on same figure over the range of k utilized to estimate the exponent.
6. Plot $q 4, E R 4$ and $S S B M 4$ on the same plot. Estimate the exponent r from the power law $y(k) \sim C k^{r}$ by a linear fit in the log-log plot, after you discard, say 100 first entries. Call $C_{4, E R}, r_{4, E R}$ and $C_{4, S S B M}, r_{4, S S B M}$ the respective parameters.
7. Plot $\log (q 4), \log (E R 4)$ and $\log \left(C_{4, E R}\right)+r_{4, E R} \log (k)$ on same figure over the range of k utilized to estimate the exponent.
8. Plot $\log (q 4), \log (S S B M 4)$ and $\log \left(C_{4, S S B M}\right)+r_{4, S S B M} \log (k)$ on same figure over the range of k utilized to estimate the exponent.

Which of the two random graph model fits better the data? Why do you think I recommend to discard the first 10 or 100 entries?
II. Community detection: For this task use the weight matrix W and the adjacency matrix A.

Implement the three community detection algorithms (partition algorithms) based on sectral method, and run them on your project data set.

Specifically, implement:

- Spectral methods using W
- Spectral methods using Δ
- Spectral methods using $\tilde{\Delta}$

1. For each of the three algorithms above, determine sets S and $\bar{S}=\{1,2, \ldots, n\} \backslash$ S.
2. Compute the agreement matrix between these partitions: The output should be a 3×3 matrix Agr so that $\operatorname{Agr}(k, l)$ represents the partition agreement between method k and method $l, 1 \leq k, l \leq 3$, the 3 methods above.
3. For visualization, for each of the three algorithms, map the two communities using two colors, say red and blue, using the coordinates (X, Y) from from the coordinate file assigned to your project. For each algorithm produce two figures as follows:
(a) Draw edges according to the adjacency matrix A, each edge with same color and same width;
(b) Draw edges according to the weight matrix W, each edge with same color and but different width, the larger the weight, the thicker the edge.
III. Data Embedding For this task use the weight matrix W.

Implement the Laplacian Eigenmap and the Local Linear Embeding (LLE) algorithms using the weight matrix W, and run them on your project data set. Specifically, implement and run:

1. Laplacian Eigenmap data embedding for target dimension $d=2$;
2. LLE dimension reduction after Laplacian Eigenmap data embedding:
(a) First run the Laplacian Eigenmap data embedding algorithm to create a geometric graph $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{N}$ with $N=10$;
(b) Then implement and run the dimension reduction LLE algorithm with non-negativity constraints on the this geometric graph to reduce dimension to $d=2$; use $K=2 d=4$.

Plot both embeddings in two different figures, and then on the same figure using different colors.

