
Random Graphs: Block Partitions and Embeddings

In this project you will apply the techniques for random graphs model se-
lection and community detection on a specific data set.

The following files are assigned to your team:

� sgb128Nodes*to* coord.txt : Coordinates of a set of 40 points (cities)
taken from SGB128 dataset; This text file has the following format:

First line: X(1) Y(1) Z(1)

Second line: X(2) Y(2) Z(2)

...

Last line: X(n) Y(n) Z(n)

Note: all Z coordinates are 0. You can discard them.

� sgb128Nodes*to* weight.txt : A symmetric matrix of weights defined by
V (i, j) = exp(−6dist(i, j)/maxD), for i 6= j, where dist(i, j) is the Eu-
clidean distance between city i and city j, and maxD = maxi,jd(i, j) is
the largest distance in the graph. This text file has the following format:

First line: n

Second line: V(1,1) V(1,2) V(1,3) ... V(1,n)

Third line: V(2,1) V(2,2) V(2,3) ... V(2,n)

...

Line n+1: V(n,1) V(n,2) V(n,3) ... V(n,n)

� sgb128Nodes*to* weight20.txt : a weight matrix W obtained by threshld-
ing V to 20% of its maximum entry. Thus, if V (i, j) ≥ 0.2max(V ) then
W (i, j) = V (i, j); otherwise W (i, j) = 0. Note: there are abut 40-45%
non-zero entries. This text file has the following format:

First line: n m

Second line: W(1,1) W(1,2) W(1,3) ... W(1,n)

Third line: W(2,1) W(2,2) W(2,3) ... W(2,n)

...

Line n+1: W(n,1) W(n,2) W(n,3) ... W(n,n)

� sgb128Nodes*to* adj20.txt : The adjacency matrix A associated to W :
A(i, j) = 1 iff W (i, j) > 0. Note: the number of edges is equal to the
number of non-zero entries in the upper traingle of W ; This text file has
the following format:

First line: n m

Second line: A(1,1) A(1,2) A(1,3) ... A(1,n)

Third line: A(2,1) A(2,2) A(2,3) ... A(2,n)

...

Line n+1: A(n,1) A(n,2) A(n,3) ... A(n,n)

1



� sgb128 name.txt: List of names from the SGB128 file. Your cities are
NodeX to NodeY where X and Y are taken from the file: sgb128NodesXtoY coord.txt.
Note: there are 128 names; your city names are only city X to city Y

On this dataset perform the following three tasks:
I. Random graph model testing: For this task use the full weight matrix V .

1. Order edges according to their weight. For this, create a matrix E of size
n(n−1)/2 x 2 that contains the ordered list of edges so that (E(1,1),E(1,2))
is an edge with the largest weight;

2. Loop with k from 2 to n(n − 1)/2 and for each k, perform the following
tasks on the set of first k edges, E(1 : k, 1 : 2):

(a) compute the actual number of 3-cliques q3(k) and 4-cliques q4(k);

(b) Under the Erdos-Renyi random graph model, estimate the parameter
p. Compute the estimated number of 3-cliques and 4-cliques (under
the Erdos-Renyi model), say ER3(k) and ER4(k);

(c) Under the SSBM random graph model, estimate the parameters a
and b based on the number of vertices, edges, and 3-cliques, using
the Modified Constrained Moment Matching Algorithm 2. Compute
the estimated number of 3-cliques and 4-cliques (under the SSBM
model), say SSBM3(k) and SSBM4(k);

3. Plot q3, ER3 and SSBM3 on the same plot. Estimate the amplitude
C and exponent r from the power law y(k) ∼ Ckr by a linear fit in the
log-log plot, after you discard the first, say 10 entries. Call C3,ER, r3,ER

and C3,SSBM , r3,SSBM the respective parameters.

4. Plot log(q3), log(ER3) and log(C3,ER) + r3,ERlog(k) on same figure over
the range of k utilized to estimate the exponent.

5. Plot log(q3), log(SSBM3) and log(C3,SSBM ) + r3,SSBM log(k) on same
figure over the range of k utilized to estimate the exponent.

6. Plot q4, ER4 and SSBM4 on the same plot. Estimate the exponent r
from the power law y(k) ∼ Ckr by a linear fit in the log-log plot, after you
discard, say 100 first entries. Call C4,ER, r4,ER and C4,SSBM , r4,SSBM

the respective parameters.

7. Plot log(q4), log(ER4) and log(C4,ER) + r4,ERlog(k) on same figure over
the range of k utilized to estimate the exponent.

8. Plot log(q4), log(SSBM4) and log(C4,SSBM ) + r4,SSBM log(k) on same
figure over the range of k utilized to estimate the exponent.

Which of the two random graph model fits better the data? Why do you think
I recommend to discard the first 10 or 100 entries?

2



II. Community detection: For this task use the weight matrix W and the
adjacency matrix A.

Implement the three community detection algorithms (partition algorithms)
based on sectral method, and run them on your project data set.

Specifically, implement:

� Spectral methods using W

� Spectral methods using ∆

� Spectral methods using ∆̃

1. For each of the three algorithms above, determine sets S and S̄ = {1, 2, . . . , n}\
S.

2. Compute the agreement matrix between these partitions: The output
should be a 3 × 3 matrix Agr so that Agr(k, l) represents the partition
agreement between method k and method l, 1 ≤ k, l ≤ 3, the 3 methods
above.

3. For visualization, for each of the three algorithms, map the two commu-
nities using two colors, say red and blue, using the coordinates (X,Y )
from from the coordinate file assigned to your project. For each algorithm
produce two figures as follows:

(a) Draw edges according to the adjacency matrix A, each edge with
same color and same width;

(b) Draw edges according to the weight matrix W , each edge with same
color and but different width, the larger the weight, the thicker the
edge.

III. Data Embedding For this task use the weight matrix W .
Implement the Laplacian Eigenmap and the Local Linear Embeding (LLE)

algorithms using the weight matrix W , and run them on your project data set.
Specifically, implement and run:

1. Laplacian Eigenmap data embedding for target dimension d = 2;

2. LLE dimension reduction after Laplacian Eigenmap data embedding:

(a) First run the Laplacian Eigenmap data embedding algorithm to cre-
ate a geometric graph {x1, . . . , xn} ⊂ RN with N = 10;

(b) Then implement and run the dimension reduction LLE algorithm
with non-negativity constraints on the this geometric graph to reduce
dimension to d = 2; use K = 2d = 4.

Plot both embeddings in two different figures, and then on the same figure
using different colors.

3


