1. First we need to estimate an upper bound on $|F[k]|$, say $|F[k]| \leq c_{k}$. The \log-log plot suggests an upper bound (blue line) described by

$$
\log \left(c_{k}\right)=a_{0}-\alpha \log (k)
$$

where a_{0} and α are estimated from the graph. At $k=1 \log (k)=0$ and we get $a_{0}=\log \left(c_{1}\right)=$ $\log (10)$. Hence $e^{a_{0}}=10$. We estimate the slope of the blue line using for instance the points $\left(k=1, c_{1}=10\right)$ and $\left(k=10, c_{10}=10^{-1}=0.1\right)$. In the log-log scale we get:

$$
\log (10)=a_{0} \quad, \quad \log \left(10^{-1}\right)=a_{0}-\alpha \log (10)
$$

Substituting a_{0} in the second equation we get:

$$
-\log (10)=\log (10)-\alpha \log (10)
$$

or

$$
-1=1-\alpha \rightarrow \alpha=2
$$

Thus we get

$$
|F[k]| \leq c_{k} \leq \exp \left(a_{0}-\alpha \log (k)\right)=\frac{e^{a_{0}}}{k^{\alpha}}=\frac{10}{k^{2}}
$$

Next we apply the summation formula we derived in class:

$$
\left|f(x)-\sum_{k=-N}^{N} F[k] e^{2 \pi i k x}\right| \leq \sum_{|k|>N}|F[k]| \leq 2 \sum_{k=N+1}^{\infty} \frac{10}{k^{2}} \leq \frac{20}{N}
$$

Thus to obtain a level of accuracy of 1% we need to have

$$
\frac{20}{N} \leq 0.01 \rightarrow N \geq 2000
$$

That is, 2000 rank partial Fourier sum, or for any N larger than 2000.
2. We derive an error for the bound $|F[k]| \leq 9 \cdot 10^{-|k|}$.

$$
\left|f(x) \sum_{k=-N}^{N} F[k] e^{2 \pi i n x}\right| \leq \sum_{|k|>N}|F[k]| \leq 2 \sum_{k=N+1}^{\infty} \frac{9}{10^{k}}=18 \frac{10}{9} 10^{-N-1}=2 \cdot 10^{-N}
$$

Thus, for an error of 0.002 we need $2 \cdot 10^{-N} \leq 0.002$ or $10^{-N} \leq 10^{-3}$. Hence $N=3$ (or any integer larger than 3) would achieve the desired level of accuracy.
3.

$$
f_{1}=1_{[1,2]}, F_{1}(\omega)=e^{-3 \pi i \omega} \frac{\sin (\pi \omega)}{\pi \omega}
$$

4.

$$
f_{2}(x)=e^{-a|x|}, \quad F_{2}(\omega)=\frac{2 a}{4 \pi^{2} \omega^{2}+a^{2}}
$$

5.

$$
f_{3}(x)=\frac{1}{\alpha^{2}+x^{2}}=\left.\frac{\pi}{\alpha} F_{2}(x)\right|_{a=2 \pi \alpha} \quad, \quad F_{3}(\omega)=\frac{\pi}{\alpha} e^{-2 \pi \alpha|\omega|}
$$

Then replace α by a :

$$
f(x)=\frac{1}{x^{2}+a^{2}} \quad \rightarrow \quad F_{3}(\omega)=\frac{\pi}{a} e^{-2 \pi a|\omega|}
$$

6.

$$
\begin{aligned}
& f_{4}(x)=\sin (2 \pi x) f_{1}(x)=\frac{1}{2 i}\left(e^{2 \pi i x} f_{1}(x)-e^{-2 \pi i x} f_{1}(x)\right) \\
& F_{4}(\omega)=\frac{1}{2 i}\left[F_{1}(\omega-1)-F_{1}(\omega+1)\right]=e^{-3 \pi i \omega} \frac{\sin (\pi \omega)}{i \pi\left(\omega^{2}-1\right)}
\end{aligned}
$$

7.

$$
\begin{gathered}
f_{5}(x)=e^{-|x|} \cos (2 \pi \alpha x)=\left.\frac{1}{2}\left(e^{2 \pi i \alpha x}+e^{-2 \pi i \alpha x}\right) f_{2}(x)\right|_{a=1} \\
F_{5}(\omega)=\frac{1}{2}\left(F_{2}(\omega-\alpha)+F_{2}(\omega+\alpha)\right)=\frac{1}{1+4 \pi^{2}(\omega-\alpha)^{2}}+\frac{1}{1+4 \pi^{2}(\omega+\alpha)^{2}}
\end{gathered}
$$

Then replace α by a :

$$
f(x)=e^{-|x|} \cos (2 \pi a x) \quad \rightarrow \quad F_{5}(\omega)=\frac{1}{1+4 \pi^{2}(\omega-a)^{2}}+\frac{1}{1+4 \pi^{2}(\omega+a)^{2}}
$$

8.

$$
\begin{gathered}
f_{6}(x)=\frac{\cos (2 \pi x)}{x^{2}+a^{2}}=\frac{1}{2}\left(e^{2 \pi i x}+e^{-2 \pi i x}\right) f_{3}(x) \\
F_{6}(\omega)=\frac{1}{2}\left(F_{3}(\omega-1)+F_{3}(\omega+1)\right)=\frac{\pi}{2 a}\left[e^{-2 \pi a|\omega-1|}+e^{-2 \pi a|\omega+1|}\right]
\end{gathered}
$$

