
Notes for Math 464

Radu V. Balan and Kasso A. Okoudjou
Department of Mathematics

University of Maryland
College Park, MD 20742 USA

February 7, 2012



Contents

1 Review and Preliminary 3
1.1 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Inner product space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Finite dimensional inner product spaces . . . . . . . . . . . . 4
1.2.2 The space L2([a, b]) . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.3 The space `2(Z) . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Fourier Series 11
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Fourier series on [0, 1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Periodic functions . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Fourier series for 1−periodic function . . . . . . . . . . . . . . 13
2.2.3 Fourier series on other interval . . . . . . . . . . . . . . . . . . 14
2.2.4 Sine and Cosine Fourier series . . . . . . . . . . . . . . . . . . 14
2.2.5 Complex form of the Fourier series . . . . . . . . . . . . . . . 16

2.3 Convergence of Fourier series . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Partial sums of a Fourier series . . . . . . . . . . . . . . . . . 17
2.3.2 Riemann-Lebesgue lemma . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Pointwise convergence of Fourier series . . . . . . . . . . . . . 18

2.4 Fourier series in [0, 1): the L2 theory . . . . . . . . . . . . . . . . . . 20
2.5 Other properties of the Fourier coefficients . . . . . . . . . . . . . . . 21

2.5.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.2 Other properties . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Fourier transform 24
3.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Properties of the Fourier transform . . . . . . . . . . . . . . . . . . . 28
3.3 L2 theory of the Fourier transform . . . . . . . . . . . . . . . . . . . 30
3.4 The Heisenberg Uncertainty principle . . . . . . . . . . . . . . . . . . 31
3.5 Linear time-invariant transform . . . . . . . . . . . . . . . . . . . . . 32
3.6 The Sampling Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1



4 Generalized functions on R 35
4.1 Schwartz functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Common generalized functions . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Operations on generalized functions . . . . . . . . . . . . . . . . . . . 40

4.3.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Translate, dilate, derivative, Fourier transform . . . . . . . . . 40
4.3.3 Translate, dilate, derivation, and Fourier transform . . . . . . 40
4.3.4 Multiplication and convolution . . . . . . . . . . . . . . . . . 41
4.3.5 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Derivative and simple differential equations . . . . . . . . . . . . . . . 42

2



Chapter 1

Review and Preliminary

In this chapter we review some necessary background from advanced calculus, and
linear algebra. We also introduce a few notions that will be used throughout these
notes.

1.1 Complex numbers

Definition 1.1.1. A complex number z is a number of the form z = x + iy where,
x, y ∈ R and i is the number such that

i2 = −1.

The set of all complex numbers is denoted by C.

Conjugate of a complex number: If z = x+iy is a complex number, its conjugate
is the complex number denoted z̄ and given by z̄ = x− iy.
Operations on complex numbers: Let zk = xk + iyk be complex numbers for
k = 1, 2. Then,

(i) z1 + z2 = z2 + z1 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2),

(ii) z1z2 = z2z1 = (x1x2 − y1y2) + i(x1y2 + x2y1).

(iii) In particular, if z = x+ iy then zz̄ = x2 + y2 ≥ 0.

We can use (iii) above to define the modulus (or absolute value ) of z to be the
nonnegative number given by

|z| =
√
zz̄ =

√
x2 + y2.

Polar form and geometric interpretation of a complex number: Every com-
plex number has a polar form given by

z = x+ iy = reiθ
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where r = |z| =
√
x2 + y2 and θ is determined by the equations x = r cos θ, y =

r sin θ. In particular,
z = x+ iy = r cos θ + ir sin θ.

It follows that to every complex number z = x + iy one can associate a point P
in the xy− plane with coordinates P = (x, y). In addition, the polar form of z is
equivalent to the fact that OP = r = |z| =

√
x2 + y2 and OP makes an angle θ with

the positive x−axis.

Example 1.1.1. 1. z = 2 − 3i. What is z̄, |z| and what is the polar form of z?
Sketch z in the complex plane.

2. Unit length complex numbers and the unit circle.

1.2 Inner product space

1.2.1 Finite dimensional inner product spaces

Given N ≥ 1 an integer, we shall denote KN where K = R orC, the vector space of
all N tuples. That is x ∈ KN if and only if x = (x1, x2, . . . , xN) where each xk ∈ K.

We define on KN the following operation

〈x, y〉 =
N∑
k=1

xkȳk

where x, y ∈ K. This is called a scalar product or an inner product on KN . The inner
product gives rise to a norm on KN namely: for each x = (x1, x2, . . . , xN) ∈ KN ,

‖x‖ =

√√√√ N∑
k=1

|xk|2.

When equipped with this inner product, KN is called an inner product space. The
inner product have the following properties: let x, y, z ∈ KN and a, b ∈ K.

(i) 〈x, y〉 = 〈y, x〉. (Remark on K = R).

(ii) 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉,

(iii) 〈x, ay + bz〉 = a〈x, y〉+ b〈x, z〉,

(iv) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0,
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We use the norm derived from the inner product to define a distance on KN :
given x, y ∈ KN , the distance between x, and y is

‖x− y‖ =

√√√√ N∑
k=1

|xk − yk|2.

Theorem 1.2.1. For any x, y ∈ KN , we have
Schwartz inequality

|〈x, y〉| ≤ ‖x‖‖y‖

with equality if and only if x or y is a nonnegative multiple of the other.
Triangle inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖

with equality if and only if x or y is a nonnegative multiple of the other.

Proof. Give the details for K = R.

Orthogonality and orthonormal basis x, y ∈ KN are said to be orthogonal if and
only if

〈x, y〉 = 0.

Given a subspace E ⊂ KN , its orthogonal complement is the subspace of KN denoted
by E⊥ and given by

E⊥ = {x ∈ KN : 〈x, y〉 = 0 for all y ∈ E}.

Exercise 1.2.1. Prove that E⊥ is a subspace of KN is E is one.

A set of vectors {ek}Nk=1 is an orthonormal basis for KN is and only if {ek}Nk=1 is
a basis and

〈ek, el〉 = δ(k − l)

where δ is the Kronecker delta sequence equal 1 for k = 0 and 0 else.
A set of vectors {ek}Nk=1 ⊂ KN is a basis for KN if and only if it is linearly

independent set and spans KN . This is equivalent to saying that every x ∈ KN has
a unique decomposition

x =
N∑
k=1

ckek

where the coefficients ck ∈ K are unique. Moreover, when {ek}Nk=1 is an orthonormal
basis, then the coefficients are given by

ck = 〈x, ek〉.
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Note that if {ek}Nk=1 is an ONB for KN , and if x ∈ KN then

‖x‖22 =
N∑
k=1

|〈x, ek〉|2.

Moreover, if x =
∑N

k=1〈x, ek〉ek and y =
∑N

k=1〈y, ek〉ek then

〈x, y〉 =
N∑
k=1

〈x, ek〉〈y, ek〉.

Orthogonal projections Given 1 ≤M ≤ N

PMx =
M∑
k=1

〈x, ek〉ek

is the orthogonal projection of EM = span{ek, k = 1, 2, . . . ,M}.

Exercise 1.2.2. In dimension N = 5 give examples of two distinct ONB and write
down the matrices corresponding to some orthogonal projections.

Given any basis {uk}Nk=1 for KN , there exists an algorithm the Gram-Schmidt
orthogonalization procedure that transform this basis to an ONB {ek}Nk=1. In partic-
ular,

e1 = u1/‖u1‖, e2 = u2−〈u2,e1〉e1
‖u2−〈u2,e1〉e1‖ ,

and having constructed el, then,

el+1 =
ul+1−

∑l
k=1〈ul+1,ek〉ek

‖ul+1−
∑l
k=1〈ul+1,ek〉ek‖

.

1.2.2 The space L2([a, b])

For a, b ∈ R, consider the functions defined on (a, b) (we allow a = −∞ and/or
b = ∞). We assume throughout that all functions are continuous on (a, b) except
may be at finitely many points.

The space L2([a, b]) is defined by

L2([a, b]) = {f : [a, b]→ C :

∫ b

a

|f(x)|2 dx <∞}.

The integral in the definition is a Riemann integral, and when one of the bounds or
both are infinite, the integral is to be interpreted as an indefinite Riemann integral.
We can equipped the space with an inner product that will make it into an inner
product space. In particular, for f, g ∈ L2([a, b]), then

〈f, g〉 =

∫ b

a

f(x)g(x) dx,

6



and

‖f‖L2([a,b]) = ‖f‖2 :=
√
〈f, f〉 =

√∫ b

a

|f(x)|2 dx.

Note that if f is piecewise continuous and ‖f‖2 = 0, then f might not be identically
equal to 0. So we make the assumption that f = g if f , and g are piecewise continuous
and equal except at finitely many points of [a, b].

Example 1.2.1. f(x) = 1 for x = 0, 1 and f(x) = 0 else. Then ‖f‖2 = 0 though f
is not identically 0.

The inner product on L2([a, b]) can be seen as a ”natural extension of the inner
product on CN using Riemann’s sums. For instance on L2([0, 1]) we have. Given
f, g ∈ L2([0, 1]) which we assume continuous, consider for each positive integer N the
vectors

fN = (f(1/N), f(2/N), . . . , f(1)) gN = (g(1/N), g(2/N), . . . , g(1)).

Then

lim
N→∞

1
N
〈fN , gN〉 = lim

N→∞
1
N

N∑
k=1

f(k/N)g(k/N) =

∫ 1

0

f(x)g(x) dx = 〈f, g〉.

We now consider the special case in which a = 0, and b = 1. L2([0, 1]) is an infinite
dimensional space. To see this, notice that the functions 1, x, x2, . . . , xn, . . . , for all
n ≥ 1 belong to L2([0, 1]) and are linearly independent Exercise: Prove this. It is
true that in L2([0, 1]) there exists a sequence of function {fk}∞k=1 such that 〈fk, fl〉 =
δ(k − l) that is the sequence is an orthonormal system and for each f ∈ L2([0, 1]),

f =
∞∑
k=1

〈f, fk〉fk

where the series convergence will be clarified soon. In this case, the sequence {fk}∞k=1

is an orthonormal basis for L2([0, 1]). In the next chapter will shall construct examples
of ONB for L2([0, 1]).

Given an ONB {fk}∞k=1, and M ≥ 1, then

PMf(x) = fM(x) =
M∑
k=1

〈f, fk〉fk(x)

is the orthogonal projection onto the span of the first M basis vectors. In particular,

f =
∞∑
k=1

〈f, fk〉fk
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means that limM→∞ fM = f , that is for each ε > 0, there exists M0 > 0 such that
for all M ≥M0,

‖fM − f‖2 < ε.

If {fk}∞k=1 is an ONB for L2([0, 1]), and if f, g ∈ L2([0, 1]) then

‖f‖22 =
∞∑
k=1

|〈f, fk〉|2

and

〈f, g〉 =

∫ 1

0

f(x)g(x) dx =
∞∑
k=1

〈f, fk〉〈g, fk〉.

The function χ[0,1] which equals 1 on [0, 1] and 0 everywhere else is an element of
L2([0, 1]) and

‖χ[0,1]‖ = 1.

Given f ∈ L2([0, 1]), then

∫ 1

0

|f(x)|dx =

∫ 1

0

χ[0,1](x)|f(x)|dx ≤

√∫ 1

0

|χ[0,1](x)|2 dx

√∫ 1

0

|f(x)|2 dx = ‖χ[0,1]‖2‖f‖2 = ‖f‖2.

This proves that if we let

L1([0, 1]) = {f : [0, 1]→ C :

∫ 1

0

|f(x)|dx <∞}

and equipped this space with the norm

‖f‖L1([0,1]) = ‖f‖1 =

∫ 1

0

|f(x)|dx

then we have
‖f‖1 ≤ ‖f‖2

meaning that
L2([0, 1]) ⊂ L1([0, 1]).

The proof of this fact was given above and uses an important inequality on L2([0, 1])
called the Cauchy-Schwartz inequality:

Theorem 1.2.2. For all f, g ∈ L2([a, b]) we have

|〈f, g〉| = |
∫ b

a

f(x) g(x) dx| ≤ ‖f‖2‖g‖2.

Proof. Highlight of the proof.
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Functions in L1((a, b)) are called integrable functions.

Exercise 1.2.3. Let f(x) = lnx, g(x) = 1
1+x2

, h(x) = 1√
x
, k(x) = 1

x
for x ∈ (0, 1).

Prove that f, g, h belong to L1(0, 1).
Prove that k /∈ L1(0, 1).
For which values of p is the function fp(x) = 1

xp
x ∈ (0, 1) in L1(0, 1)?

For which values of p is the function fp(x) = 1
xp
x ∈ (0, 1) in L2(0, 1)?

Convergence in L2 versus uniform convergence Let {fn}∞n=1 be a sequence of
functions defined from (a, b) into C. The sequence is said to converge to a function
f defined on (a, b) if the sequence of numbers {fn(x)}∞n=1 converges to f(x) for each
x ∈ (a, b). More specifically, for each x ∈ (a, b) and each ε > 0, there is an integer
N0 = N0(x, ε) ≥ 1 such that for all n ≥ N0,

|fn(x)− f(x)| < ε.

If the indice N0 can be chosen independently of x ∈ (a, b) then we said that fn
converges to f uniformly on (a, b). In particular, this means that for each ε > 0,
there is an integer N0 = N0(ε) ≥ 1 such that for all n ≥ N0, and for each x ∈ (a, b)
we have

|fn(x)− f(x)| < ε.

If each of the function fn and f belongs to L2(a, b) the the sequence converges
to f in L2 if and only if for each ε > 0 there is an integer N0 ≥ 1 such that for all
n ≥ N0 we have

‖fn − f‖2 =

√∫ b

a

|fn(x)− f(x)|2 dx < ε.

Remark 1.2.1. Remark on the relation between the three types of convergence defined
above.

1.2.3 The space `2(Z)

Another infinite dimensional inner product that space that we shall encounter later
is a space of infinite sequences given by

`2(Z) = {a = (an)∞n=−∞ : an ∈ C∀n ∈ Z,
∞∑

n=−∞

|an|2 <∞}.

An inner product on `2(Z) is defined by: for a = (an)∞n=−∞, b = (bn)∞n=−∞ ∈ `2(Z) set

〈a, b〉 =
∞∑

n=−∞

anbn.
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This leads to the following norm:

‖a‖`2(Z) = ‖a‖2 =

√√√√ ∞∑
n=−∞

|an|2.

Note that to check if a sequence a = (an)∞n=−∞ belongs to `2(Z) we must check if
the series

∞∑
n=−∞

|an|2

converges. This is a series whose general term is nonnegative. We can make appeal
to the convergence theorem for nonnegative series!
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Chapter 2

Fourier Series

2.1 Motivation

To motivate this material consider the following problem: add the physical inter-
pretation of the equation justifies the following.

Exercise 2.1.1. Let u(t, x) represent the temperature at time t ≥ 0 and position
x ∈ [0, 1] on a piece of wire of length 1 unit. Thus, u(t, x) is a function of two
variable: time t ∈ [0,∞) and space x ∈ [0, 1]. Assume that u(t, x) satisfies the
following equation:

ut(t, x) = uxx(t, x) t > 0, 0 ≤ x ≤ 1
u(0, x) = f(x) 0 ≤ x ≤ 1
u(t, 0) = 0
u(t, 1) = 0.

Where f is a function defined on [0, 1], ut is the first partial derivative of u with
respect to t and uxx is the second partial derivative of u with respect to x. Find an
expression for u(t, x) in terms of f , x and t.

Solution 2.1.1. First we assume that the solution u(t, x) can be written as u(t, x) =
T (t)X(x) where T is only function of time t and X is only function of space x. By
substituting this for of u(t, x) in the original equation we obtain:

T ′(t)X(x) = T (t)X ′′(x)

which is equivalent to

T ′(t)
T (t)

= X′′(x)
X(x)

∀t > 0, x ∈ [0, 1].

This is only possible if there is a constant c such that

T ′(t)
T (t)

= X′′(x)
X(x)

= c ∀t > 0, x ∈ [0, 1].

11



Now we can solve T ′(t)
T (t)

= c and get T (t) = Cect for all t > 0. The constant c

must be negative, otherwise the temperature u(t, x) will grow without bound. Thus,
T (t) = Cect for t ≥ 0, and c < 0.

The second equation now becomes X ′′(x) = cX(x) where x ∈ [0, 1]. This leads
to X(x) = a cos

√
−cx + b sin

√
−cx for some constants a, b. However, the initial

conditions now read T (0)X(x) = f(x) and T (t)X(0) = 0 = T (t)X(1) for all x ∈ [0, 1]
and t > 0. Hence, X(0) = X(1) = 0 which implies that a = 0, and b sin

√
−c = 0.

If b = 0 we will only have the trivial solution, thus sin
√
−c = 0 which im-

plies that
√
−c = kπ, where k ∈ N. That is, Xk(x) = b sin kπx and so u(t, x) =

Cbe−k
2π2t sin kπx.

By the superposition principle, any solution to the above equation is given by

u(t, x) =
∞∑
k=1

bke
−k2π2t sin kπx.

Using the last initial condition we see that

u(0, x) =
∞∑
k=1

ck sin kπx = f(x).

So the equation will have a solution if the function f can be expressed as an infinite
series :

f(x) =
∞∑
k=1

ck sin kπx.

This is an example of a Fourier series.
Some questions come to mind: How are the coefficients ck computed and how are

they related to f? What type of convergence does the series possess? These are some
of the questions we shall address below.

2.2 Fourier series on [0, 1]

2.2.1 Periodic functions

Definition 2.2.1. Let T > 0 be a positive real number. A function f : R → R is
T−periodic if

f(x+ T ) = f(x)

for all x ∈ R. In this case, f is completely determined by its values on any interval
of length T such as [a, a + T ) for any a ∈ R. In the sequel we shall consider any
T−periodic function to be defined on the interval [0, T ). The real number T is called
a period of f . Notice that 2T, 3T, . . . , nT are all period of f . The smallest period
will be called the period of f .

Example 2.2.1. f(x) = sinx, g(x) = cosx are both 2π−periodic. h(x) = sin 2x is
π−periodic. Notice that h can also be considered also as a 2π−periodic function.
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2.2.2 Fourier series for 1−periodic function

Definition 2.2.2. Let f : [0, 1)→ R be a 1−periodic function. The following series
is called the Fourier series associated to f :

f(x) ≈ a0 +
∞∑
k=1

ak cos 2πkx+ bk sin 2πkx (2.1)

for some coefficients a0, ak, bk for k = 1, 2, . . ..

Lemma 2.2.1. For each k, ` ∈ N we have

∫ 1

0
sin 2kπx cos 2`πx dx = 0 ∀k, ` ≥ 1∫ 1

0
sin 2kπx sin 2`πx dx = 1

2
δ(k − `)∫ 1

0
cos 2kπx cos 2`πx dx = 1

2
δ(k − `)∫ 1

0
cos 2kπx dx = 0∫ 1

0
sin 2kπx dx = 0,

(2.2)

where δ is the sequence defined by δ(k) = 0 for all k 6= 0 and δ(0) = 1.

Proof. Direct integration.

The above lemma can be summarized as saying that the family of functions

{1,
√

2 cos 2kπx,
√

2 sin 2kπx}∞k=1 = {1,
√

2 cos 2πx,
√

2 sin 2πx,
√

2 cos 4πx,
√

2 sin 4πx, . . .}

is an orthonormal set in L2[0, 1).
Using Lemma 2.2.1 we can prove:

Theorem 2.2.1. If f(x) = a0 +
∑∞

k=1 ak cos 2kπx+ bk sin 2kπx, then

a0 =

∫ 1

0

f(x) dx

ak = 2

∫ 1

0

f(x) cos 2kπx dx

bk = 2

∫ 1

0

f(x) sin 2kπx dx

Proof. Straight computations.

Definition 2.2.3. Given f(x) = a0 +
∑∞

k=1 ak cos 2kπx+ bk sin 2kπx, the coefficients
a0, ak, bk, k ≥ 1 given in Theorem 2.2.1 are called the Fourier coefficients of f .

Example 2.2.2. Find the Fourier coefficients of f(x) = χ[0,1)(x), g(x) = x and
h(x) = sin 2πx+ 5 cos 6πx− 4 sin 10πx where x ∈ [0, 1) and the functions are consid-
ered 1−periodic.
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Remark 2.2.1. From the above we can view the Fourier series of f as a transformation
that sends the function f to its Fourier coefficients {a0, ak, bk : k = 1, 2, . . .} which
are defined in Theorem 2.2.1. More specifically, we have

f ↔ {a0, ak, bk : k = 1, 2, . . .}.

The question that comes to mind is the following: For which functions can one
compute the Fourier coefficients and thus form a Fourier series? One can prove
that for any function that is integrable on L1[0, 1), the Fourier coefficients can be
computed. Hence the Fourier series can be formed. The next question is whether
this Fourier series converges, and if it does what is the limit? We will just touch upon
certain aspect of these questions in the lecture.

2.2.3 Fourier series on other interval

Theorem 2.2.2. If f(x) = a0+
∑∞

k=1 ak cos(2kπx/T )+bk sin(2kπx/T ) is T periodic,
then

a0 = 1
T

∫ T/2

−T/2
f(x) dx

ak = 2
T

∫ T/2

−T/2
f(x) cos(2kπx/T ) dx

bk = 2
T

∫ T/2

−T/2
f(x) sin(2kπx/T ) dx

Proof. Just use a change of variable.

Example 2.2.3. Consider the 2−periodic function f defined by

f(x) =

{
x if x ∈ [0, 1]
1 if x ∈ [1, 2).

Find the Fourier series of f .

2.2.4 Sine and Cosine Fourier series

Definition 2.2.4. Let f : R → R be a function. f is an even function if f(−x) =
f(x) for all x ∈ R. f is an odd function if f(−x) = −f(x).

The following result about the integration of even and odd functions is easy to
prove.

Lemma 2.2.2. Let f : R→ R be a function.

14



• If f is an even function and if a ∈ R the∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx.

• If f is an odd function and if a ∈ R the∫ a

−a
f(x)dx = 0.

Example 2.2.4. (i) Assume that f is a 1−periodic and even function. Find the
Fourier coefficients of f .

(ii) Assume that g is a 1−periodic and odd function. Find the Fourier coefficients
of g.

Solution 2.2.1. (i) a0 =
∫ 1

0
f(x)dx =

∫ 1/2

−1/2 f(x)dx = 2
∫ 1/2

0
f(x)dx.

ak = 2
∫ 1

0
f(x) cos(2πkx)dx.

bk = 2
∫ 1

0
f(x) sin(2πkx) dx = 2

∫ 1/2

−1/2 f(x) sin(2πkx) dx = 0 because f(x) sin(2πkx)

is an odd function.

(ii) a0 =
∫ 1

0
g(x)dx =

∫ 1/2

−1/2 g(x)dx = 0 because g is odd.

ak = 2
∫ 1

0
g(x) cos(2πkx)dx = 2

∫ 1/2

−1/2 g(x) cos(2πkx) dx = 0, since g(x) cos(2πkx)

is odd.

bk = 2
∫ 1

0
g(x) sin(2πkx) dx.

Theorem 2.2.3. Let f be a 1−periodic function defined from R into R.

(i) If f is even and {a0, ak, bk : k = 1, 2, . . . ,∞} are the Fourier coefficients of f
then bk = 0 for all k ≥ 1. Consequently, the Fourier series of f reduces to

f(x) ≈ a0 +
∞∑
k=1

ak cos 2kπx.

(ii) If f is odd and {a0, ak, bk : k = 1, 2, . . . ,∞} are the Fourier coefficients of f
then ak = 0 for all k ≥ 0. Consequently, the Fourier series of f reduces to

f(x) ≈
∞∑
k=1

bk sin 2kπx.

Example 2.2.5. (i) Let f : [0, 1/2) → R defined by f(x) = x. Find the even
1−periodic extension of f , and find the Fourier series of this extension.

(ii) Let f : [0, 1/2) → R defined by f(x) = x. Find the odd 1−periodic extension
of f , and find the Fourier series of this extension.

15



2.2.5 Complex form of the Fourier series

Exercise 2.2.1. For each integer m ∈ Z, that is m = 0,±1,±2,±3, . . . let em(x) =
e2πimx for x ∈ R. Thus em : R→ C by em(x) = e2πimx.
a) Prove that em is a 1−periodic function.
b) Compute the inner product between em and en for any m,n ∈ Z. That is what is
〈em, en〉?
c) Let f : R → R be a 1−periodic function whose Fourier coefficients are a0, ak, bk,
k ≥ 1. Let ck = 〈f, ek〉 for each k ∈ Z. Find a relation between c0 and a0 as well as
between ck, ak, and bk for each k ≥ 1.

Solution 2.2.2. a) For each x ∈ R,

em(x+ 1) = e2πim(x+1) = e2πimx+2πim = e2πimxe2πim = e2πimx = em(x).

Hence em is 1−periodic.
b)

〈em, en〉 =

∫ 1

0

em(x)en(x) dx =

∫ 1

0

e2πimxe−2πinx dx =

∫ 1

0

e2πi(m−n)xdx.

If m 6= n then, m− n 6= 0 and∫ 1

0

e2πi(m−n)xdx = 1
2πi(m−n)e

2πi(m−n)x|10 = 0.

If m = n, then ∫ 1

0

e2πi(m−n)xdx ==

∫ 1

0

dx = 1.

c) Assume that k > 0

ck = 〈f, ek〉

=

∫ 1

0

f(x)ek(x)dx

=

∫ 1

0

f(x)e−2πkixdx

=

∫ 1

0

f(x)(cos 2πkx− i sin 2πkx)dx

=

∫ 1

0

f(x) cos 2πkxdx− i
∫ 1

0

f(x) sin 2πkxdx

= ak
2
− i bk

2
.

If k < 0, the −k > 0 and

ck = 〈f, ek〉 =

∫ 1

0

f(x)e−2πikxdx =

∫ 1

0

f(x)e−2πi(−k)xdx

16



hence,

ck =

∫ 1

0

f(x)e−2πi(−k)xdx = 〈f, e−k〉 = a−k
2

+ i b−k
2
.

c0 = 〈f, e0〉 =

∫ 1

0

f(x)dx = a0.

Note that for k ≥ 1, ck = c−k and so:

ak = ck + ck = ck + c−k and bk = i(ck − ck) = i(ck − c−k).

Theorem 2.2.4. Let f : R→ R be a 1−periodic function. If f(x) ≈
∑∞

k=−∞ cke
2πkx

for x ∈ [0, 1) then

ck =

∫ 1

0

f(x)e−2πikxdx,

and {ck : k = 0,±1,±2,±3, . . .} are called the complex Fourier coefficients of f .
Moreover, these complex Fourier coefficients of f are related to the Fourier coefficients
a0, ak, bk by:

c0 = a0, ck = ak
2
− i bk

2

when k ≥ 1. For k ≤ −1, ck = c−k.

2.3 Convergence of Fourier series

2.3.1 Partial sums of a Fourier series

Throughout this section we assume that f : R→ R is 1−periodic. Denote by

F (x) = a0 +
∞∑
k=1

ak cos 2πkx+ bk sin 2πkx

where a0, ak, bk are the Fourier coefficients defined in Section 2. For each K ≥ 1 we
define the Kth partial sum of this Fourier series by

FK(x) = a0 +
K∑
k=1

ak cos 2πkx+ bk sin 2πkx (2.3)

Our goal is to give condition on the function f such that F (x) := limK→∞ FK(x)
exists and equals to F (x) = f(x) for x ∈ [0, 1).

Remark 2.3.1. Note that for any 1−periodic function f , if
∫ 1

0
|f(x)|dx <∞, then the

Fourier coefficients a0, ak, bk or ck can be computed, and thus the Fourier series F (x)
given above can be formed. Thus the Fourier series of every function in L1([0, 1)) is
well defined.
Question: What about a function in L2[0, 1)?

17



2.3.2 Riemann-Lebesgue lemma

Theorem 2.3.1. Suppose f is a T−periodic and piecewise continuous function, then

lim
k→∞

∫ T

0

f(x) cos(2πkx/T ) dx = lim
k→∞

∫ T

0

f(x) sin(2πkx/T ) dx = lim
k→∞

∫ T

0

f(x)e−2πikx/T dx = 0.

Proof. First assume that f(x) =
∑N

n=1 dnχ[an,bn)(x) is 1−periodic, and compute
its Fourier coefficients. Notice for each n = 1, 2, . . . , N we have ck(χ[an,bn)) =∫ bn
an
e−2πkxdx = e2πkan−e−2πikbn

2πik
. Clearly, this sequence converges to 0 as k → ∞ and

so will any finite combination of such functions.
The remaining part of the proof consists of approximating any piecewise smooth

function uniformly by simple functions as above.

Theorem 2.3.2. Let f be a 1−periodic function. Assume that f ′ exists and is contin-
uous except at finitely many points. Let ck denote the (complex) Fourier coefficients of
f , and denote by c′k the Fourier coefficients of f ′. Then for each k = ±1,±2,±3, . . .

c′k = (2πik)ck.

More generally, if f (n) exists and is continuous except at finitely many points in
[0, 1), and if c

(n)
k denotes the Fourier coefficients of f (n)(x) then

c
(n)
k = (2πik)nck

for each k = ±1,±2,±3, . . . .

Proof. Use integration by parts.

2.3.3 Pointwise convergence of Fourier series

Theorem 2.3.3. Suppose that f is continuous and 1−periodic. At each point x
where f is differentiable, the Fourier series of f converges to f(x), that is

lim
K→∞

a0 +
K∑
k=1

ak cos 2πkx+ sin 2πkx = f(x).

To prove the theorem we need some preparations.

Lemma 2.3.1. For each x ∈ [0, 1) let

PN(u) = 1 + 2 cos 2πu+ 2 cos 4πu+ 2 cos 6πu+ . . .+ 2 cos 2Nπu.

Then,

PN(u) =

{
sin(2N+1)πu

sinπu
: u 6= 0

2N + 1 : u = 0

Moreover, ∫ 1

0

PN(u)du = 1.

18



Proof. Based on geometric sums.

Proof. : Proof of Theorem 2.3.3 Consider the N − th partial Fourier sum:

FN(x) = a0 +
N∑
n=1

an cos 2πnx+ bn sin 2πnx.

FN(x) = a0 +
N∑
n=1

an cos 2πnx+ bn sin 2πnx

=

∫ 1

0

f(u)du+
N∑
n=1

2

∫ 1

0

f(u) cos 2πnudu cos 2πnx+ 2

∫ 1

0

f(u) sin 2πnudu sin 2πnx

=

∫ 1

0

(1 + 2
N∑
n=1

cos 2πnu cos 2πnx+ sin 2πnu sin 2πnx)f(u) du

=

∫ 1

0

(1 + 2
N∑
n=1

cos 2πn(u− x))f(u)du

=

∫ 1

0

PN(x− u)f(u)du

=

∫ x−1

x

PN(u)f(u+ x)du

=

∫ 1

0

PN(u)f(x+ u)du.

Now look at

f(x)− FN(x) =

∫ 1

0

f(x)PN(u)du−
∫ 1

0

PN(u)f(x+ u)du

=

∫ 1

0

(f(x)− f(x+ u))PN(u)du∫ 1

0

f(x)−f(x+u)
sinπu

sin(2N + 1)πudu.

Now if we denote bu gx(u) the function

gx(u) = f(x)−f(x+u)
sinπu

,

it is clear that gx is well defined an continuous for u 6= 0. Now

lim
u→0

gx(u) = lim
u→0

f(x)−f(x+u)
sinπu

= −πf ′(x)
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. Thus gx is defined and continuous for all u and by Riemann-Lebesgue lemma we
have

lim
N→∞

f(x)− FN(x) = lim
N→∞

∫ 1

0

f(x)−f(x+u)
sinπu

sin(2N + 1)πudu = 0.

In fact, a following stronger result holds. Recall that a piecewise smooth function
is a continuous function that is differentiable everywhere except possibly for a discrete
set of points.

Theorem 2.3.4. If f is 1−periodic and piecewise smooth on [0, 1) then the Fourier
series of F converges uniformly to f on [0, 1).

Remark 2.3.2. What happens at a point where f is not continuous? If f has a (finite)
jump discontinuity and if f is right-differentiable and left-differentiable, then we can
still use the above proof with some modifications.

Example 2.3.1. a) Let f(x) be the even, 1−periodic function given by f(x) = x
for x ∈ [0, 1/2). Prove that the Fourier series of f converges to f at each point
x ∈ [−1/2, 1/2). Does the Fourier series of f converge uniformly?
b) Use part a to find the values of

∑∞
n=0

1
(2n+1)2

.

2.4 Fourier series in [0, 1): the L2 theory

Recall that

{1,
√

2 cos 2πx,
√

2 sin 2πx, . . .} = {1,
√

2 cos 2πkx,
√

2 sin 2πkx : k = 1, 2, . . .}

is an orthonormal set in L2[0, 1), and so is

{e2πinx : n = 0,±1,±2,±3, . . .}.

Note also that L2[0, 1) ⊂ L1[0, 1) and so it makes sense to compute the Fourier
coefficients of any L2 function.

Theorem 2.4.1. Let f ∈ L2[0, 1), and

fN(x) = a0 +
N∑
n=1

an cos 2πnx+ bn sin 2πnx

where a0, ak, bk are the Fourier coefficients of f . Then fN converges to f in L2[0, 1)
that is ‖fN − f‖2 → 0 as N →∞.

Similarly, if

fN(x)
N∑

n=−N

cne
2πinx

where cn are the complex Fourier coefficients of f , then fN converges to f in L2[0, 1).
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The following are two very important results about the L2 theory of Fourier series.

Theorem 2.4.2. Let

f(x) = a0 +
∞∑
k=1

ak cos 2πkx+ bk sin 2πkx ∈ L2[0, 1)

Then ∫ 1

0

|f(x)|2 dx = |a0|2 + 1
2

∞∑
k=1

|ak|2 + |bk|2.

Similarly, if

f(x) =
∞∑

n=−∞

cne
2πnix ∈ L2[0, 1)

then ∫ 1

0

|f(x)|2 dx =
∞∑

n=−∞

|cn|2.

2.5 Other properties of the Fourier coefficients

2.5.1 Convolution

Definition 2.5.1. Let f, g be two 1−periodic function. The convolution of f and g
is the function defined by

f ∗ g(x) = g ∗ f(x) =

∫ 1

0

f(t)g(x− t)dt.

Theorem 2.5.1. Let f, g be two 1−periodic and integrable functions. The f ∗ g is
1−periodic and its Fourier coefficients are given by

cn(f ∗ g) = cn(f)cn(g),

for each n = 0,±1,±2, . . . .
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Proof.

cn(f ∗ g) =

∫ 1

0

f ∗ g(x)e−2πinxdx

=

∫ 1

0

∫ 1

0

f(t)g(x− t)dt e−2πinx dx

=

∫ 1

0

f(t)

∫ 1

0

g(x− t)e−2πinxdxdt

=

∫ 1

0

f(t)

∫ 1−t

−t
g(y)e−2πin(y+t)dydt

=

∫ 1

0

f(t)e−2πint
∫ 1

0

g(y)e−2πinydydt

=

∫ 1

0

f(t)e−2πintcn(g)dt

= cn(f)cn(g)

2.5.2 Other properties

Exercise 2.5.1. Let f : [0, 1)→ C be a 1−periodic function with Fourier coefficients
cn. Find the Fourier coefficients of f , f(−x), and f(−x). What can conclusions can
be drawn?

Solution 2.5.1.

cn(f) =

∫ 1

0

f(x)e−2πinxdx =

∫ 1

0

f(x)e2πinxdx = c−n(f).

cn(f(−x)) =

∫ 1

0

f(−x)e−2πinxdx

= −
∫ −1
0

f(x)e2πinxdx

=

∫ 0

−1
f(x)e2πinxdx

=

∫ 1

0

f(x)e2πinxdx

= c−n(f)

= cn(f)
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Note that if f is real-valued, then f(x) = f(x) and so in the last formula we have

cn(f(−x)) = c−n(f) = cn(f).

Combining the last two properties we see that

cn(f(−x)) = cn(f) = c−n(f) = cn(f).

From this exercise we get the following results:

Proposition 2.5.1. let f : [0, 1)→ C be 1−periodic.

(i) If f is real-valued then

cn(f(−x)) = c−n(f) = cn(f).

In addition, if f(−x) = f(x) then,

cn(f) = cn(f(−x)) = c−n(f) = cn(f).

(ii) If f is complexed valued and f(−x) = f(x) then

cn(f(−x)) = cn(f) == c−n(f) = cn(f).
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Chapter 3

Fourier transform

3.1 Definition and examples

3.1.1 Definition

Definition 3.1.1. Let f : R → R be a function such that
∫∞
−∞ |f(x)|dx < ∞. The

Fourier transform of f is the function f̂ : R→ C defined by

f̂(γ) =

∫ ∞
−∞

f(x)e−2πixγdx. (3.1)

The inverse Fourier transform is given by

f(x) =

∫ ∞
−∞

f̂(γ)e2πxiγdγ. (3.2)

Remark 3.1.1. (i.) Notice that for any real-valued function f , the Fourier transform
is complex-valued.

(ii.) The Fourier transform of f is defined as long as the indefinite integral∫ ∞
−∞
|f(x)|dx <∞.

The space of all such function will be denoted

L1(R) = {f : R→ R :

∫ ∞
−∞
|f(x)|dx <∞}.

This is a vector space on which one can define a norm by: for f ∈ L1(R),

‖f‖1 =

∫ ∞
−∞
|f(x)|dx.

Question: Give example of functions in L1(R).
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Proposition 3.1.1. If f ∈ L1(R), then its Fourier transform f̂ is a bounded and
uniformly continuous function on R. In particular,

|f̂(γ)| ≤ ‖f‖1

for all γ ∈ R.

Proof. The fact that f̂ is bounded follows from

|f̂(γ)| = |
∫ ∞
−∞

f(x)e−2πixγdx| ≤
∫ ∞
−∞
|f(x)e−2πixγ|dx =

∫ ∞
−∞
|f(x)|dx = ‖f‖1

for each γ ∈ R.
To prove that f̂ is uniformly continuous, first assume that f is smooth and equal

0 outside an interval [−a, a]. Then, for γ, γ′ ∈ R

|f̂(γ)− f̂(γ′)| = |
∫ ∞
−∞

f(x)(e−2πiγx − e−2πiγ′x)dx|

= |
∫ a

−a
f(x)(e−2πiγx − e−2πiγ′x)dx|

≤
∫ a

−a
|f(x)(e−2πiγx − e−2πiγ′x)|dx

≤
∫ a

−a
|f(x)||(e−2πiγx − e−2πiγ′x)|dx

=

∫ a

−a
|f(x)||(e−2πiγx − e−2πiγ′x)|dx

=
√

2

∫ a

−a
|f(x)|| sin(πx(γ − γ′))|dx

≤
√

2π|γ − γ′|
∫ a

−a
|xf(x)|dx

≤
√

2aπ|γ − γ′|‖f‖1.

The proof for general f ∈ L1(R) uses the fact that any such function f can be
approximated with a smooth function that is 0 outside an interval [−a, a] for some
a > 0.

Let
L∞(R) = {f : R→ C : sup

x∈R
|f(x)| <∞}

then L∞ is a vector space equipped with the norm

‖f‖∞ = sup
x∈R
|f(x)|.
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It follows that the Fourier transform is a map

F : L1(R)→ L∞(R)

given by
F(f)(γ) = f̂(γ).

The inverse Fourier transform will be seen as the inverse F−1 of this map. We will
describe the properties of the map F in the next section.

Exercise 3.1.1. Justify informally why F−1 is the inverse of F .

3.1.2 Examples

Let f be defined on R by

f(x) =

{
1 : |x| ≤ 1/2
0 : |x| > 1/2

For γ ∈ R, and γ 6= 0,

f̂(γ) =

∫ ∞
−∞

f(x)e−2πixγ

=

∫ 1/2

−1/2
1e−2πxγdx

= −1
2πiγ

e−2πixγ|x=1/2
x=−1/2

= −1
2πiγ

(e−πiγ − eπiγ)

= eπiγ−e−πiγ
2πiγ

= 2i sinπγ
2πiγ

= sinπγ
πγ

For γ = 0 we have

f̂(0) =

∫ ∞
−∞

f(x)e−2πix0dx =

∫ 1/2

−1/2
1dx = 1

Therefore,

f̂(γ) =

{ sinπγ
πγ

: γ 6= 0

1 : γ = 0

Notice that
lim
γ→0

f̂(γ) = lim
γ→0

sinπγ
πγ

= 1 = f̂(0).
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So f̂ is a continuous function on R. The function f̂(γ) = sinπγ
πγ

is called the sinc
function and is denoted:

sinc(γ) = sinπγ
πγ

.

For the second example let: g(x) = f ∗ f(x), where f is defined above. Then

g(x) =

∫ ∞
−∞

f(t)f(x− t)dt

=

∫ 1/2

−1/2
f(x− t)dt

= −
∫ x−1/2

1/2+x

f(y)dy

=

∫ x+1/2

x−1/2
f(y)dy

If x+ 1/2 ≤ −1/2, that is, x ≤ −1 or if x− 1/2 ≥ 1/2, that is x ≥ 1, then g(x) = 0,
as the integrand in the last integral vanishes. So we must consider only x such that
|x| ≤ 1. If −1 < x < 0, then −1/2 < x+ 1/2 < 1/2 and −3/2 < x− 1/2 < −1/2, so
the last integral reduces to

g(x) =

∫ x+1/2

−1/2
f(y)dy =

∫ x+1/2

−1/2
dy = x+ 1/2 + 1/2 = x+ 1.

If 0 < x < 1/2, 1/2 < x+ 1/2 < 1 and −1/2 < x− 1/2 < 0, so the integral defining
g becomes

g(x) =

∫ 1/2

x−1/2
f(y)dy =

∫ 1/2

x−1/2
dy = 1/2− x+ 1/2 = 1− x.

Therefore,

g(x) =

{
1− |x| : |x| ≤ 1

0 : |x| > 1
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The Fourier transform of g is now given by: Let γ 6= 0.

ĝ(γ) =

∫ ∞
−∞

g(x)e−2πiγxdx

=

∫ 1

−1
(1− |x|)e−2πiγxdx

=

∫ 0

−1
(1 + x)e−2πiγxdx+

∫ 1

0

(1− x)e−2πiγxdx

= −(1+x)e−2πγx

2πiγ
+ e−2πiγx

4π2γ2
|0−1 + −(1−x)e−2πγx

2πiγ
− e−2πiγx

4π2γ2
|10

= 2−2 cos 2πγ
4π2γ2

= 4 sin2 πγ
4π2γ2

= sin2 πγ
π2γ2

ĝ(0) =

∫ 1

−1
(1− |x|)dx = 1.

We will compute the Fourier transform of h(x) = e−πx
2
, in the next subsection.

3.2 Properties of the Fourier transform

Theorem 3.2.1. For any f ∈ L1(R),

lim
|γ|→∞

f̂(γ) = 0.

Proof. This is the Riemann-Lebesgue lemma. To prove it, first assume that f is
continuous and f(x) = 0 for all |x| > A for some large A > 0. This f can in turn be
approximated by a piecewise constant function, for which the theorem holds.

From now on we will view the Fourier transform as an operator that is a function
whose domain is a subspace of functions. This operator was denoted by F . We now
list some properties of this operator.

Theorem 3.2.2. Let f and g be defined on R such that f is smooth and f(x) = 0
for |x| large. Assume that g ∈ L1(R). Then the following hold:

(i) F(f + g) = F(f) + F(g) and for any constant a, F(af) = aF(f). We say in
this case that F is a linear operator.

(ii) F(xnf(x))(γ) = 1
(−2πi)n

dn

dγn
F(f)(γ)

(iii) For any constant a, F(f(x− a))(γ) = e−2πiaγF(f)(γ).
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(iv) For any constant a, F(e2πiaxf(x))(γ) = F(f)(γ − a).

(v) For any b ∈ R, F(f(bx))(γ) = 1
b
F(f)(γ/b).

(vi) For any n, F(f (n))(γ) = (2πiγ)nF(f)(γ).

Exercise 3.2.1. Find the Fourier transform of h(x) = e−πx
2
, by proving that ĥ is

the solution to y′ + 2πγy = 0 and y(0) = 1.

Solution 3.2.1.

ĥ′(γ) =

∫ ∞
−∞

e−πx
2

(−2πix)e−2πixγdx

= i

∫ ∞
−∞

(−2πxe−πx
2

)e−2πixγdx

= ie−πx
2

e−2πixγ|∞−∞ − i
∫ ∞
−∞

e−πx
2

(−2πiγ)e−2πixγdx

= 2πi2γ

∫ ∞
−∞

e−πx
2

e−2πixγdx

= −2πγĥ(γ)

which shows that
ĥ′(γ) + 2πγ(̂h)(γ) = 0.

But ĥ(0) =
∫∞
∞ e−πx

2
dx = 1. Thus, ĥ(γ) is the unique solution to the given initial

value problem. But this is a linear first order equation and its solution is y = e−πγ
2
.

Therefore, ĥ(γ) = e−πγ
2
.

Theorem 3.2.3. If f, g are integrable functions, then f ∗ g defined by

f ∗ g(x) =

∫ ∞
−∞

f(y)g(x− y)dy =

∫ ∞
−∞

g(y)f(x− y)dy = g ∗ f(x)

is integrable and
ˆf ∗ g(γ) = f̂(γ)ĝ(γ).
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Proof.

ˆf ∗ g(γ) =

∫ ∞
−∞

f ∗ g(x)e−2πixγdx

=

∫ ∞
−∞

∫ ∞
−∞

f(y)g(x− y)dye−2πixγdx

=

∫∫ ∞
−∞

f(y)g(x− y)e−2πixγdydx

=

∫ ∞
−∞

f(y)

∫ ∞
−∞

g(x− y)e−2πixγdxdy

=

∫ ∞
−∞

f(y)

∫ ∞
−∞

g(u)e−2πi(u+y)γdudy

=

∫ ∞
−∞

f(y)e−2πiγy
∫ ∞
−∞

g(u)e−2πiuγdudy

=

∫ ∞
−∞

f(y)e−2πiγyf̂(γ)dy

= f̂(γ)

∫ ∞
−∞

f(y)e−2πiγydy

= f̂(γ)ĝ(γ).

3.3 L2 theory of the Fourier transform

Definition 3.3.1. Let f ∈ L2(R), be given. The Fourier transform of f is the L2(R)
function f̂ that is defined by

f̂(γ) = lim
n→∞

∫ n

−n
f(x)e−2πixγdx

where the limit is taken in the L2 sense. That is

lim
n→∞

∫ ∞
−∞
|̂(f)(γ)−

∫ n

−n
f(x)e−2πixγdx|2dγ = 0.

Theorem 3.3.1. If f, g ∈ L2(R), then the following hold:

(i) 〈f̂ , g〉 = 〈F(f), g〉L2 = 〈f,F−1(g)〉L2 .

(ii) 〈f̂ , ĝ〉 = 〈f, g〉.

In particular,
‖f̂‖L2(R) = ‖f‖L2(R)
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Note that the fact that 〈f̂ , ĝ〉 = 〈f, g〉 is called Plancherel theorem and ‖f̂‖L2(R) =
‖f‖L2(R) is Parseval identity.

Example 3.3.1. Let f be defined on R by

f(x) =

{
1 : |x| ≤ 1/2
0 : |x| > 1/2

Prove that
‖f̂‖L2 = ‖sincγ‖L2 = 1.

3.4 The Heisenberg Uncertainty principle

Definition 3.4.1. Given a function f ∈ L2(R), we define the dispersion of f about
a point a ∈ R by

∆af =
∫∞
−∞(x−a)2|f(x)|2 dx

‖f‖2
L2(R)

.

Note that if

‖f‖2L2(R) =

∫ ∞
−∞
|f(x)|2dx = 1,

then |f(x)|2dx can be interpreted as a probability distribution of R and ∆af is just
the variance of this probability distribution when a =

∫∞
−∞ x|f(x)|2dx.

Theorem 3.4.1. Given any a, b ∈ R, we have

∆af∆bf̂ =
∫∞
−∞(x−a)2|f(x)|2 dx

‖f‖2
L2(R)

∫∞
−∞(γ−b)2|f̂(γ)|2 dγ

‖f̂‖2
L2(R)

≥ 1
16π2

for all f ∈ L2(R).

If we take a =
∫∞
−∞ x|f(x)|2dx, and b =

∫∞
−∞ γ|f̂(γ)|2dγ, and if we assume that

‖f‖L2 = ‖f̂‖L2 = 1, then the Heisenberg uncertainty principle reduces to∫ ∞
−∞

(x− a)2|f(x)|2 dx
∫ ∞
−∞

(γ − b)2|f̂(γ)|2 dγ ≥ 1
16π2 .

In particular, ∆af and ∆bf̂ cannot be made small simultaneously. Therefore, if a
function is well localized in space (or time) (x−variable), then it cannot be well-
localized in frequency (γ-variable).
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3.5 Linear time-invariant transform

We consider transforms (that is functions acting on other functions) that are defined
on the vector space of all piecewise continuous functions.

Definition 3.5.1. A transform L is linear if L(f + g) = L(f) + L(g), and L(af) =
aL(f) for any f, g and any scalar a.

A linear transform is time-invariant if L[f(x−a)] = L[f ](x−a) for every function
f and any scalar a. This means that the image under L of a delayed signal, is the
same as the delayed image L(f).

Example 3.5.1. Prove that L[f ](x) =
∫ x
0
f(s)ds is linear but not time-invariant.

Prove that L[f ](x) = h ∗ f(x) where h ∈ L1(R) is a linear time-invariant trans-
formation.

Theorem 3.5.1. If L is a linear time invariant transformation on the space of
piecewise continuous functions, and if γ ∈ R is fixed, then there exists a function
h : R→ C such that

L(e2πiγx) = ĥ(γ)e2πiγx.

In addition,
L(f) = h ∗ f.

Proof. We only sketch the proof of this result. Let a ∈ R be fixed and let γ ∈ R.
Set gγ(x) = e2πiγx, and gγ,a(x) = gγ(x − a) = e2πiγ(x−a). Using the fact that L is
time-invariant we can write:

L(gγ,a)(x) = L(gγ)(x−a).On the other hand, gγ,a(x) = e−2πiγe2πiγx = e−2πiγagγ(x).
Using the fact that L is linear we can write: L(gγ,a)(x) = e−2πiaγL(gγ)(x). Conse-
quently,

L(gγ,a)(x) = L(gγ)(x− a) = e−2πiaγL(gγ)(x).

Since this holds for arbitrary a, if we choose x = a we see that

L(gγ)(0) = e−2πiγxL(gγ)(x)

and so
L(gγ)(x) = L(gγ)(0)e2πiγx.

We can define the function h by letting ĥ(γ) = L(gγ)(0). This completes the proof of
the first part.

For the second part, we use the fact that L is linear and f(x) =
∫∞
−∞ f̂(γ)e2πiγxdx

to write

L(f)(x) =

∫ ∞
−∞

f̂(γ)L(e2πiγx)dγ =

∫ ∞
−∞

f̂(γ)ĥ(γ)e2πiγxdγ = h ∗ f(x).

Note that we have used the fact that the integral defining the inverse Fourier trans-
form can be approximated using (finte) Riemann sums.
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The function h(x) defined in Theorem 3.5.1 is called the impulse response function
of the linear time-invariant transformation L.

Example 3.5.2. Find the impulse response of each of the following linear time-
invariant transformations:

(i) L1 filters out all frequency above B1/2 and below −B1 < /2.

(ii) L3 retains only frequencies γ such that B1 ≤ |γ| ≤ B2

, where B1, B2 are some positive numbers.

3.6 The Sampling Theorem

Definition 3.6.1. A function f ∈ L2(R) is said to be band-limited is there exists
B > 0, such that

f̂(γ) = 0 |γ| > B/2.

The smallest number B, for which the last equation holds, is called the bandwidth of
f .

Example 3.6.1. (i) f(x) = sinπx
πx

(ii) g(x) = e−πx
2 ∗ sinπx

πx

Remark 3.6.1. A function f ∈ L2(R) is called time-limited if there exists T > 0, such
that

f(x) = 0 |x| > T/2.

Note that by the Heisenberg uncertainty principle, it is impossible for a non-zero
function to be both band-limited and time-limited.

The following theorem is known as the Shannon-Whittaker Sampling Theorem

Theorem 3.6.1. Let f be a band-limited function with bandwidth B > 0. f is com-
pletely determine by its values at the points k

B
, for k = 0,±1,±2, . . . . In particular,

f(x) =
∞∑

k=−∞

f(k/B)sincB(x− k/B) =
∞∑

k=−∞

f(k/B) sinπB(x−k/B)
πB(x−k/B)

(3.3)

where the series converges uniformly.

Proof. Write the (complex) Fourier series of f̂(γ) considered as a B−periodic func-
tion.
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Lemma 3.6.1. Given B > 0, we denote the space of band-limited functions with
bandwidth B, by

PW (B) = {f ∈ L2(R) : f̂(γ) = 0, |γ| > B/2}.

It follows that {
√
Bsinc[B(x − k/B)] =

√
B sinπB(x−k/B)

πB(x−k/B)
: k = 0,±1,±2, . . .} is an

orthonormal basis for PW (B).

In fact, Let f be a band-limited function with bandwidth B. If T > 0 is such
that 0 < TB < 1, then f can be reconstructed from its samples at kT, with k =
0,±1,±2,±3, . . . . In particular,

f(x) = T
∞∑

k=−∞

f(kT ) sin[π(x−kT )/T ]
π(x−kT ) =

∞∑
k=−∞

f(kT ) sin[π(x−kT )/T ]
[π(x−kT )/T ] =

∞∑
k=−∞

f(kT )sinc[(x−kT )/T ],

where the series converges uniformly. The condition TB < 1 is equivalent to T <
1/B. The case T = 1/B is exactly what we proved in Theorem 3.6.1. The rate of
sampling T = 1/B is called the Nyquist rate, and the condition TB < 1 is called
the Nyquist condition. The conclusion we take from here is that any band-limited
function can be reconstructed from its samples taken at a sampling rate satisfying
the Nyquist condition.
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Chapter 4

Generalized functions on R

We would like to give a rigorous meaning to expression such as∫ ∞
−∞

φ(x)δ(x)dx = φ(0),

∫ ∞
−∞

φ(x)e−πx
2

dx = f{φ}.

For what type of functions φ can the above expression makes sense? How do we
interpret these expressions?

4.1 Schwartz functions

Definition 4.1.1. A function φ : R→ C is called a Schwartz function if φ is infinitely
continuously differentiable, that is φ′, φ′′, φ(3), . . . exist and are continuous and if

lim
|x|→∞

xnφ(m)(x) = 0, ∀m = 0, 1, 2, . . . , n = 0, 1, 2, . . . .

The set of all Schwartz functions will be denoted S

Example 4.1.1. If f(x) = e−πx
2
, then f ∈ S.

Let g(x) = sinπx
πx

. Is g ∈ S?
Given any a < b, there exists a function φ ∈ S such that φ(x) > 0 if a < x < b,

φ(x) = 0 if x ≤ a or x ≥ b.
In fact, given any a < b < c < d, there exists a function φ ∈ S such that φ(x) = 0

for x ≤ a or x ≥ d, φ(x) = 1 is b ≤ x ≤ c, φ′(x) > 0 for a < x < b and φ′(x) < 0 for
c < x < d.

Exercise 4.1.1. Let p ∈ [1,∞]. Prove that if φ ∈ S, then φ ∈ Lp(R), that is∫∞
−∞ |φ(x)|pdx <∞ if 1 ≤ p <∞, and supx∈R |φ(x)| <∞.

Prove that if φ ∈ S, then φ(m) ∈ S for all m = 1, 2, . . . .
Prove that if φ ∈ S, then xnφ(x) ∈ S for all n = 1, 2, . . . .
Prove that if φ ∈ S, then xnφ(m)(x) ∈ S for all n = 1, 2, . . . ,m = 1, 2, . . . .
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Lemma 4.1.1. S is a linear space: if φ1, φ2 ∈ § and a, b ∈ C, then aφ1 + bφ2 ∈ S.
If φ1, φ2 ∈ S, then φ1 ∗ φ2, φ1φ2 all belong to S.

Proposition 4.1.1. If φ ∈ S, then φ̂(γ) =
∫∞
−∞ φ(x)e−2πiγxdx ∈ S and φ(x) =∫∞

−∞ φ̂(γ)e2πiγxdγ.

Proof. Give the proof in class.

What is a functional? δ{φ} = φ(0) for φ ∈ S is a ”function” whose domain is S!
This is an example of functional.

Definition 4.1.2. Let f be a function defined on R. The fundamental functional
corresponding to f is the functional defined on S by:

f{φ} =

∫ ∞
−∞

f(x)φ(x)dx.

Remark 4.1.1. For φ ∈ S we define the Dirac delta functional by

δ{φ} = φ(0) :=

∫ ∞
−∞

δ(x)φ(x)dx.

Definition 4.1.3. A function f : R→ C is said to be slowly growing if

lim
|x|→∞

f(x)
xn

= 0

for some choice of n = 0, 1, 2, . . . .
If in addition f is continuous, we will say that f is a continuous slowly growing

(CSG) function.

Example 4.1.2. (i) Any function f ∈ S is CSG.

(ii) Any polynomial is CSG.

(iii) sinx, cosx, ln |x|, x ln |x|

Proposition 4.1.2. Let g be a CSG function, and let φ ∈ S. Prove that gφ is a CSG
function. Moreover, prove that gφ ∈ L1(R).

Given any CSG function g we will associate the fundamental functional defined
by

g{φ} :=

∫ ∞
−∞

g(x)φ(x)dx,

for each φ ∈ S.
Assume that g is CGS and has a derivative g′ which is also CSG. Then for each

φ ∈ S we have
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∫ ∞
−∞

g′(x)φ(x) dx = lim
L→−∞,U→∞

∫ U

L

g′(x)φ(x)dx

= lim
L→−∞,U→∞

g(x)φ(x)|UL −
∫ U

L

g(x)φ′(x)dx

= −
∫ ∞
−∞

g(x)φ′(x)dx

Consequently, we can define

g′{φ} := −
∫ ∞
−∞

g(x)φ′(x)dx,

for φ ∈ S. g′ will be called the generalized derivative of the CSG function g.
More generally, the nth generalized derivative of the CSG function g is defined by

g(n){φ} := (−1)n
∫ ∞
−∞

g(x)φ(n)(x)dx,

for φ ∈ S.

Definition 4.1.4. We say that f is a generalized function if f = g(n) for some choice
of CSG function g and for some nonnegative integer n.

Remark 4.1.2. Given two generalized functions f1, f2 and a < b we will say that
f1(x) = f2(x) for x ∈ (a, b) if f1{φ} = f2{φ} for all φ ∈ S with φ(x) = 0 for x < a or
x > b.

If a = −∞ and b = ∞, then f1(x) = f2(x) for x ∈ R if f1{φ} = f2{φ} for all
φ ∈ S.

Example 4.1.3. Show that f(x) = sgn(x), f(x) = xxy, and f(x) = ln |x| are
generalized functions.

4.2 Common generalized functions

Find and simplify the functional that is used to represent each of the following gen-
eralized function

(a) pn(x) = xn, n = 0, 1, 2, . . .,

Note that each of the functions pn is CSG, thus for each φ ∈ S,

pn{φ} =

∫ ∞
−∞

pn(x)φ(x)dx =

∫ ∞
−∞

xnφ(x)dx.
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Now, the generalized derivative of pn is

p′n{φ} = −
∫ ∞
−∞

pn(x)φ′(x)dx = −
∫ ∞
−∞

xnφ′(x)dx = n

∫ ∞
−∞

xn−1φ(x)dx = npn−1{φ}.

Thus, p′n = npn−1.

(b) c(x) = cos x, s(x) = sinx. For each φ ∈ S we have

c{φ} =

∫ ∞
−∞

cosxφ(x)dx, and s{φ} =

∫ ∞
−∞

sinxφ(x)dx.

Moreover,

c′{φ} = −
∫ ∞
−∞

cosxφ′(x)dx = −
∫ ∞
−∞

sinxφ(x)dx = −s{φ}

, and so c′ = −s. Similarly, s′ = c.

(c) r, r′, r′′, . . . r(n) where

r(x) =

{
x : x > 0
0 : x ≤ 0

r is a CSG and so for each φ ∈ S we have

r{φ} =

∫ ∞
−∞

r(x)φ(x)dx =

∫ ∞
0

xφ(x)dx.

r′{φ} = −
∫ ∞
−∞

r(x)φ′(x)dx = −
∫ ∞
0

xφ′(x)dx =

∫ ∞
0

φ(x)dx := H(φ)

where H is the Heaviside function defined by

H(x) =

{
1 : x > 0
0 : x ≤ 0

r′′{φ} = (−1)2
∫ ∞
−∞

r(x)φ′′(x)dx =

∫ ∞
0

xφ′′(x)dx = −
∫ ∞
0

φ′(x)dx = φ(0) := δ(φ)

So the Dirac delta function is the generalized function given by δ := r′′. Note
that δ(n) = r(n+2) and δ(n){φ} = (−1)nφ(n)(0).

(d) q, q′q′′, . . . , q(n) where q(x) =
∫ x
0
τ(t)dt with τ(x) = xxy = m if m ≤ x < m+ 1,

and m = 0,±1,±2, . . ..
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τ is slowly growing but not continuous, however, q is CSG. Thus for φ ∈ S we
have q{φ} =

∫∞
−∞ q(x)φ(x)dx, and

q′{φ} = −
∫ ∞
−∞

q(x)φ′(x)dx =
∞∑

m=−∞

∫ m+1

m

−q(x)φ′(x)dx.

Now q′(x) = m for m < x < m+ 1 and m = 0,±1,±2, . . ..

q′{φ} =
∞∑

m=−∞

[q(m)φ(m)− q(m+ 1)φ(m+ 1) +

∫ m+1

m

mφ(x)dx

=

∫ ∞
∞

τ(x)φ(x)dx := τ{φ}

q′′{φ} = (−1)2
∫ ∞
−∞

q(x)φ′′(x)dx

=
∞∑

m=−∞

∫ m+1

m

−mφ′(x)dx

=
∞∑

m=−∞

mφ(m)−mφ(m+ 1)

=
∞∑

m=−∞

φ(m).

comb{φ} =
∞∑

m=−∞

φ(m).

This is the Comb generalized function. It is immediate that

comb(n){φ} = (−1)(n)
∞∑

m=−∞

φ(n)(m).

(d) `, `′, `′′, . . . `(n), where `(x) =
∫ x
0

ln |t|dt = x ln |x| − x. ` is CSG so if φ ∈ S we
have

`{φ} =

∫ ∞
−∞

`(x)φ(x)dx =

∫ ∞
−∞

(x ln |x| − x)φ(x)dx.

`′{φ} = −
∫ ∞
−∞

`(x)φ′(x)dx =

∫ ∞
−∞

ln |x|φ(x)dx.

Justify why `′′ = x−1 = p−1. In particular,

`′′{φ} = p−1{φ} = lim
L→∞

∫ L

−L

φ(x)−φ(0)
x

dx.
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To prove this statement, let φ ∈ S and define φ1(x) = φ(x) − φ(0). Observe
that φ1 is continuous, but not in S (why?). Also, φ′1(x) = φ′(x) for all x. Now

`′′{φ} = (−1)2
∫ ∞
−∞

(x ln |x| − x)φ′′(x)dx

= −
∫ ∞
−∞

ln |x|φ′(x)dx

= −
∫ ∞
−∞

ln |x|φ′1(x)dx

= lim
L→∞

lim
ε→0+

−
∫ −ε
−L

ln |x|φ′1(x)dx+

∫ L

ε

ln |x|φ′1(x)dx

= lim
L→∞

lim
ε→0+

[ln |x|φ1(x)|−ε−L +

∫ −ε
−L

φ1(x)
x
dx− ln |x|φ1(x)|Lε +

∫ L

ε

φ1(x)
x
dx

= lim
L→∞

∫ L

−L

φ1(x)
x
dx

where the continuity of φ1 was used and limx→0 ln |x|φ1(x) = 0.

4.3 Operations on generalized functions

4.3.1 Linearity

If f1, f2 are two generalized function and if c1, c2 are two scalars, then c1f1 + c2f2
is also a generalized function. The collection of all generalized functions is a linear
space denoted G.

4.3.2 Translate, dilate, derivative, Fourier transform

For x0 ∈ R and φ ∈ S we let Tx0φ(x) = φ(x + x0). If a > 0, then Saφ(x) = φ(ax).
Dφ(x) = φ′(x), and Fφ(x) = φ̂(x).

4.3.3 Translate, dilate, derivation, and Fourier transform

Proposition 4.3.1. Let f be a generalized function, let x0 ∈ R, a ∈ R, define then
f1(x) = Tx0f(x) = f(x + x0), f2(x) = Saf(x) = f(ax), f3(x) = Df(x) = f ′(x), and
f4(s) = Ff(s) = f̂(s) all defined generalized functions. In particular, for each φ ∈ S
we have

f1{φ} = Tx0f{φ} = f{T−x0φ} =

∫ ∞
−∞

f(x)φ(x− x0)dx

f2{φ} = Saf{φ} = 1
|a|f{S1/aφ} = 1

|a|

∫ ∞
−∞

f(x)φ(x/a)dx
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f3{φ} = Df{φ} = f ′{φ} = −
∫ ∞
−∞

f(x)φ′(x)dx

f4{φ} = F(f){φ} = f̂{φ} =

∫ ∞
−∞

f(s)φ̂(s)ds

Example 4.3.1. Simplify: δ′′(x− 5), comb′(x), p̂1, δ̂, ˆp−1.

Remark 4.3.1. Given a function φ ∈ S we can define the following new functions:

φ̌(x) = φ(−x), φ†(x) = φ(−x), φ−(x) = φ(x).

We can then define similar operation of generalized functions: if f ∈ G, then for each
φ ∈ S we have

f̌{φ} = f{φ̌}, f †{φ} = f{φ†}, f−{φ} = f{φ−}.

Then the generalized function f is even if f̌ = f , odd if f̌ = −f , real if f− = f , pure
imaginary if f− = −f , hermitian if f † = f , and anti hermitian if f † = −f

4.3.4 Multiplication and convolution

Let α be a function on R such that α, α′, α′′, . . . are all CSG. Then given a generalized
function f ∈ G, we can define the product of α and f to be the generalized function
given by

[α · f ]{φ} = f{αφ},
for each φ ∈ S.

Let β be a function on R such that β̂, β̂′, β̂′′, . . . are all CSG. Then given a gener-
alized function f ∈ G, we can define the convolution of β and f to be the generalized
function given by

[β ∗ f ]{φ} = f{φ ∗ β̌},
for each φ ∈ S.

Example 4.3.2. Find α(x) · δ(x− x0)
Prove that for each generalized function f , we have δ ∗ f = f .
Prove that x · p−1(x) = 1.
Prove that α · δ(k)(x− x0) =

∑k
`=0

(
k
`

)
(−1)k−`α(k−`)(x0)δ

(`)(x− x0).

If g is a CSG and φ ∈ S, φ ∗ g(n) = [φ ∗ g](n) = φn ∗ g. In fact, if f is a generalized
function given by f = g(n) for some CSG g and n ≥ 0, and if φ ∈ S we have
φ ∗ f = φ(n) ∗ g, (φ ∗ f)′ = φ(n+1) ∗ g, . . . .

Exercise 4.3.1. Can the following be defined? δ · δ, δ · p−1, 1 ∗ 1, x ∗ x3?
Is it true that [f1 · f2] · f3 = f1 · [f2 · f3], [f1 ∗ f2] ∗ f3 = f1 ∗ [f2 ∗ f3]? Hint consider

δ, x, p−1 and 1, δ′, and sgn(x).
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4.3.5 Division

Let g be a generalized function and α be a function such that α, α′, α′′, . . . are all CSG.
If 1/α, 1/α′, 1/α′′, . . . are all CSG then there exists a unique generalized function f
such that α · f = g. In fact, f = 1

α
· g.

Example 4.3.3. Find f ∈ G such that eiπx
2 · f(x) = e−πx

2
.

Does there exists f ∈ G such that e−πx
2 · f(x) = 1?

Proposition 4.3.2. The solution to (x−x0)n ·f = 0 where f is a generalized function
on R, and n ≥ 0 is

f(x) =
n−1∑
k=0

ckδ
(k)(x− x0)

for some coefficients ck.

Example 4.3.4. Solve (x2 − 4) · f(x) = 1:
1

x2−4 = 1
(x−2)(x+2)

= 1
4
[ 1
x−2 −

1
x+2

]. Therefore,

(x2 − 4) · 1
4
[ 1
x−2 −

1
x+2

] = 1
4
[(x+ 2)− (x− 2)] = 1

Thus the equation to be solve can be written as (x2 − 4) · f(x) = 1 = (x2 − 4) ·
1
4
[ 1
x−2 −

1
x+2

] leading to the homogeneous equation

(x2 − 4) · [f(x)− 1
4
p−1(x− 2) + 1

4
p−1(x+ 2)] = 0

and this can be solve easily by

f(x) = 1
4
p−1(x− 2)− 1

4
p−1(x+ 2) + c1δ(x− 2) + c2δ(x+ 2).

4.4 Derivative and simple differential equations

Rules of derivative: if f1, f2, f3, are generalized functions and if α, α′, α′′, . . . , and
β̂, β̂′, β̂′′, . . . CSG , and if a, x0 ∈ R , c1, c2 ∈ C then:

[c1f1(x)+c2f2(x)]′ = c1f
′
1(x)+c2f

′
2(x), [f(x−x0)]′ = f ′(x−x0), [f(ax)]′ = af ′(ax),

[α(x) · f(x)]′ = α(x) · f ′(x) + α′(x) · f(x), [(β ∗ f)(x)]′ = (β′ ∗ f)(x) = (β ∗ f ′)(x).
Let H be the Heaviside function, prove that r(x) = x ·H(x) where r is the ram

function and use this to find r′′.

h(x− x1) =

{
1 : x > x1
0 : x < x1

Find f ′.
Assume that f has the jump Jk = f(x+k )− f(x−k ) at the point xk, k = 1, 2, · · · ,m

the piecewise smooth function f0(x) = f(x)−
∑m

k=1 Jkh(x− xk) is continuous. And
so f ′(x) = f ′0(x) +

∑m
k=1 Jkδ(x − xk) with f ′0 being represented by the fundamental

functional of the ordinary derivative.
Find f ′, f ′′, . . . if f(x) = e−xH(x).
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