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Chapter 1

Review and Preliminary

In this chapter we review some necessary background from advanced calculus, and
linear algebra. We also introduce a few notions that will be used throughout these
notes.

1.1 Complex numbers

Definition 1.1.1. A complex number z is a number of the form z = = + iy where,
x,y € R and ¢ is the number such that

i* = —1.
The set of all complex numbers is denoted by C.

Conjugate of a complex number: If 2 = x+iy is a complex number, its conjugate
is the complex number denoted z and given by z = x — 1y.

Operations on complex numbers: Let z; = x; + ty; be complex numbers for
k =1,2. Then,

(1) 21+ 20 =20+ 21 = (1 + 1y1) + (w2 + 1y2) = (z1 + x2) + i(y1 + ¥2),
(i) 2122 = 2021 = (w122 — Y1y2) + i(T1Y2 + T2y1).
(iii) In particular, if z = x + iy then 2z = 2® + y* > 0.

We can use (iii) above to define the modulus (or absolute value ) of z to be the
nonnegative number given by

|z| = Vzz =22+ >

Polar form and geometric interpretation of a complex number: Every com-
plex number has a polar form given by

z=x+iy =re?
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where r = |z| = /22 + y? and 0 is determined by the equations z = rcosf,y =
rsinf. In particular,
z=x+ 1y =rcosf +irsiné.

It follows that to every complex number z = z + iy one can associate a point P
in the zy— plane with coordinates P = (z,y). In addition, the polar form of z is
equivalent to the fact that OP = r = |z| = \/2? + y? and OP makes an angle 6 with
the positive xr—axis.

Example 1.1.1. 1. z = 2 — 3i. What is z, |z| and what is the polar form of z?
Sketch z in the complex plane.

2. Unit length complex numbers and the unit circle.

1.2 Inner product space

1.2.1 Finite dimensional inner product spaces

Given N > 1 an integer, we shall denote K where K = Ror C, the vector space of
all N tuples. That is z € KV if and only if z = (21, 2o, ..., 2x) where each z; € K.
We define on KV the following operation

N
<$7 y> = Z xkgk
k=1

where z,y € K. This is called a scalar product or an inner product on KV. The inner
product gives rise to a norm on K" namely: for each z = (z1,2s,...,2y) € KV,

When equipped with this inner product, KV is called an inner product space. The
inner product have the following properties: let x,y, 2 € KV and a,b € K.

z,y) = (y,x). (Remark on K = R).

) (

(i) (ax + by, z) = alz, z) + by, 2),
) (2, ay + bz) = a(z,y) + bz, 2),
) (

xz,xy >0 and (z,x) =0 if and only if x = 0,



We use the norm derived from the inner product to define a distance on K¥:
given z,y € KV, the distance between z, and vy is

N
lz = yll = 4| D ok — wel.
k=1

Theorem 1.2.1. For any z,y € KV, we have
Schwartz inequality

[{z )| < Nl llflyll

with equality if and only if x or y is a nonnegative multiple of the other.
Triangle inequality
lz +yll < llzll + [yl

with equality if and only if x ory is a nonnegative multiple of the other.

Proof. Give the details for K = R.
O

Orthogonality and orthonormal basis z,y € K" are said to be orthogonal if and
only if

(x,y) = 0.
Given a subspace E C K¥, its orthogonal complement is the subspace of K¥ denoted
by E+ and given by

Et ={r e K" : (x,y) = 0for ally € E}.
Exercise 1.2.1. Prove that £+ is a subspace of KV is E is one.

A set of vectors {ex}4_, is an orthonormal basis for KV is and only if {e;}2; is
a basis and

(er,e1) =d(k—1)

where 0 is the Kronecker delta sequence equal 1 for £ = 0 and 0 else.
A set of vectors {ex}h_; C K% is a basis for KV if and only if it is linearly
independent set and spans K. This is equivalent to saying that every x € K" has

a unique decomposition
N
Tr = E CrLEL

k=1

where the coefficients ¢; € K are unique. Moreover, when {e;}2_, is an orthonormal
basis, then the coefficients are given by

cr = (T, ex).



Note that if {e,}1_, is an ONB for KV, and if z € K" then

N
lzl3 = > I, e .
k=1

Moreover, if z = S~ (z, ex)er and y = Son_, (y, ex)ex then

WE

<.Z’,y> = <x7€k><y7€k>'

i

1

Orthogonal projections Given 1 < M < N

Pyx = Z(x, ex)Er

M
k=1

is the orthogonal projection of Ey; = span{er, k =1,2,..., M}.

Exercise 1.2.2. In dimension N = 5 give examples of two distinct ONB and write
down the matrices corresponding to some orthogonal projections.

Given any basis {ug}h_, for KV, there exists an algorithm the Gram-Schmidt
orthogonalization procedure that transform this basis to an ONB {e;}7_,. In partic-

ular,

er =yl ez = alizena

and having constructed e;, then,

U1 =Ygy (1 er)er
11— h—y (wig1 ek ) exll

€l+1 = |

1.2.2 The space L?*([a,b])

For a,b € R, consider the functions defined on (a,b) (we allow a = —oo and/or
b = o0). We assume throughout that all functions are continuous on (a,b) except
may be at finitely many points.

The space L?([a,b]) is defined by

b
L2([ab) = {f : [a,b] > C - / F(2)[2dz < o).

The integral in the definition is a Riemann integral, and when one of the bounds or
both are infinite, the integral is to be interpreted as an indefinite Riemann integral.
We can equipped the space with an inner product that will make it into an inner
product space. In particular, for f,g € L*([a,b]), then

Um:/JuMEm
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and

b
1A lson = I1£lle == VT = / (@) da.

Note that if f is piecewise continuous and || f||2 = 0, then f might not be identically
equal to 0. So we make the assumption that f = ¢ if f, and g are piecewise continuous
and equal except at finitely many points of [a, b].

Example 1.2.1. f(z) =1 for x = 0,1 and f(z) = 0 else. Then ||f||2 = 0 though f
is not identically 0.

The inner product on L?([a,b]) can be seen as a "natural extension of the inner
product on CV using Riemann’s sums. For instance on L*([0,1]) we have. Given
f, 9 € L*(]0,1]) which we assume continuous, consider for each positive integer N the
vectors

fy = (F/N). F@/N). ... F(1) gy = (9(1/N).g(2/N). ... g(1).
Then
Tim (v gn) = lim 3 (/NN = /f g(@)dx = {f.g).

We now consider the special case in which a = 0, and b = 1. L*([0,1]) is an infinite
dimensional space. To see this, notice that the functions 1, z,22,...,2",..., for all
n > 1 belong to L*([0, 1]) and are linearly independent Exercise: Prove this. It is
true that in L?(]0, 1]) there exists a sequence of function { f;}3°, such that (f, f;) =

d(k — 1) that is the sequence is an orthonormal system and for each f € L*([0,1]),

F=Y AL
k=1

where the series convergence will be clarified soon. In this case, the sequence { f}32,
is an orthonormal basis for L?([0, 1]). In the next chapter will shall construct examples
of ONB for L?([0,1]).

Given an ONB {f}72,, and M > 1, then

M
Py f(x) = {f, fi il
k=1

is the orthogonal projection onto the span of the first M basis vectors. In particular,

F=Y LI
k=1
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means that limy; . far = f, that is for each € > 0, there exists My > 0 such that
for all M > M,

1 far = fll2 <.
If {f.}?2, is an ONB for L?([0,1]), and if f, g € L*([0,1]) then

A3 = 1F fu)l?
k=1

and

(f, f(x fs fi)(
9) / kzz; k

The function x(o,1) which equals 1 on [0, 1] and 0 everywhere else is an element of
L*(]0,1]) and
X1l = 1.
Given f € L*([0,1]), then

1 1 1 1
dx = d 2d 2dx = = .
/0 ()| dz / Yo (@) £ (@) xs\/ / o () \/ / F@Pdz = Ixoullallflls = 1]z

This proves that if we let

LY[0,1]) = {f:[0,1] - C: /0 F(2)|dz < oo}

and equipped this space with the norm

1
1l = 11l = / 1 (@)|dx

then we have

L < 11£12

meaning that

L*([0,1]) c L'([0,1]).

The proof of this fact was given above and uses an important inequality on L*([0, 1])
called the Cauchy-Schwartz inequality:

Theorem 1.2.2. For all f,g € L*([a,b]) we have

) = | / f(2) 9@ dz) < [fll2]lgll>

Proof. Highlight of the proof. O]



Functions in L'((a, b)) are called integrable functions.

Exercise 1.2.3. Let f(z) = Inz,g(x) =
Prove that f, g, h belong to L'(0,1).
Prove that k ¢ L'(0,1).
For which values of p is the function f,(z) = % x € (0,1) in L*(0,1)?
For which values of p is the function f,(z) = = z € (0,1) in L*(0,1)?

h(x) = k(z) = X for z € (0,1).

1 1
142> NEx

Convergence in L? versus uniform convergence Let {f,}>%, be a sequence of
functions defined from (a,b) into C. The sequence is said to converge to a function
f defined on (a, b) if the sequence of numbers {f, ()}, converges to f(x) for each
x € (a,b). More specifically, for each x € (a,b) and each ¢ > 0, there is an integer
No = Ny(z,€) > 1 such that for all n > Ny,

[fnlx) = f2)] <e

If the indice Ny can be chosen independently of z € (a,b) then we said that f,
converges to f uniformly on (a,b). In particular, this means that for each ¢ > 0,
there is an integer Ny = Ny(e) > 1 such that for all n > Ny, and for each x € (a,b)
we have

[fn(z) = fz)] <e

If each of the function f, and f belongs to L*(a,b) the the sequence converges
to f in L? if and only if for each € > 0 there is an integer Ny > 1 such that for all
n > Ny we have

b
[fo = flla = \// |fo(z) — f(2)2de < e.

Remark 1.2.1. Remark on the relation between the three types of convergence defined
above.

1.2.3 The space (*(Z)

Another infinite dimensional inner product that space that we shall encounter later
is a space of infinite sequences given by

(7)) = {a=(an)>_. :a, € C¥n € Z, Z |an|? < oo}

n=-—oo

An inner product on ¢*(Z) is defined by: for a = (a,)%>__,b= (b)) __ € (*(Z) set

n=—o00"’ n=-—oo

[e.e]

(a,b) = Z by

n=—oo



This leads to the following norm:

lalle@ = llall2 =
Note that to check if a sequence a = (a, )% ___ belongs to ¢*(Z) we must check if
the series -
2 laP

converges. This is a series whose general term is nonnegative. We can make appeal
to the convergence theorem for nonnegative series!
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Chapter 2

Fourier Series

2.1 Motivation

To motivate this material consider the following problem: add the physical inter-
pretation of the equation justifies the following.

Exercise 2.1.1. Let u(t,x) represent the temperature at time ¢ > 0 and position
x € [0,1] on a piece of wire of length 1 unit. Thus, u(¢,z) is a function of two
variable: time t € [0,00) and space x € [0,1]. Assume that u(t,z) satisfies the
following equation:

u(t, ) = Up(t, ) t>0,0<z<1
u(0,z) = f(z) 0<z<1

u(t,0) = 0

u(t,1) = 0.

Where f is a function defined on [0,1], u; is the first partial derivative of u with
respect to t and u,x is the second partial derivative of u with respect to z. Find an
expression for u(t,z) in terms of f, x and t.

Solution 2.1.1. First we assume that the solution u(¢, x) can be written as u(t, x) =
T(t)X (z) where T is only function of time ¢t and X is only function of space z. By
substituting this for of u(t, z) in the original equation we obtain:

T'(t) X (x) = T(t) X" (x)

which is equivalent to

e _ X'(z)
T T X(o) vt >0, T e [O, 1]

This is only possible if there is a constant ¢ such that

) _ X'(=z) _
T = x@ =C¢ Vi>0, x € [0,1].

11



Now we can solve 7;((;)) = ¢ and get T(t) = Ce for all ¢ > 0. The constant ¢
must be negative, otherwise the temperature u(¢, z) will grow without bound. Thus,
T(t) = Ce for t > 0, and ¢ < 0.

The second equation now becomes X”(z) = ¢X(x) where x € [0,1]. This leads
to X(x) = acosy/—cx + bsiny/—cx for some constants a,b. However, the initial
conditions now read 7'(0) X (z) = f(z) and T'(¢) X (0) = 0= T'(t) X (1) for all z € [0, 1]
and t > 0. Hence, X(0) = X (1) = 0 which implies that a = 0, and bsin /—c = 0.

If b = 0 we will only have the trivial solution, thus sin\/—c = 0 which im-
plies that \/—c = km, where k¥ € N. That is, Xy(z) = bsinkrz and so u(t,z) =
Cbe ¥ ™t sin kre.

By the superposition principle, any solution to the above equation is given by

o0
_K2x%t
u(t,x) = E bre " ™ tsin k.
k=1

Using the last initial condition we see that
u(0,2) = ch sin krx = f(x).
k=1

So the equation will have a solution if the function f can be expressed as an infinite
series :

flz) = Z cp sinkmx.
k=1

This is an example of a Fourier series.

Some questions come to mind: How are the coefficients ¢, computed and how are
they related to f? What type of convergence does the series possess? These are some
of the questions we shall address below.

2.2 Fourier series on [0, 1]

2.2.1 Periodic functions

Definition 2.2.1. Let T' > 0 be a positive real number. A function f : R — R is
T —periodic if
flz+T) = f(z)

for all x € R. In this case, f is completely determined by its values on any interval
of length T such as [a,a + T) for any a € R. In the sequel we shall consider any
T—periodic function to be defined on the interval [0,7"). The real number 7" is called
a period of f. Notice that 27,37, ..., nT are all period of f. The smallest period
will be called the period of f.

Example 2.2.1. f(z) = sinz, g(z) = cosx are both 2r—periodic. h(z) = sin2z is
m—periodic. Notice that h can also be considered also as a 2r—periodic function.

12



2.2.2 Fourier series for 1—periodic function

Definition 2.2.2. Let f:[0,1) — R be a 1—periodic function. The following series
is called the Fourier series associated to f:

o
f(z) =~ ap+ Z ay, cos 2rkx 4 by, sin 2mkx (2.1)
k=1
for some coefficients ag, a, by for k=1,2,....

Lemma 2.2.1. For each k,¢ € N we have

( fol sin 2kmx cos 20z dx 0 Vi, 0 >1
fl sin 2kmasin2nede = 16(k— ()
[y cos2kmx cos2mxdr = Lo(k—{) (2.2)
fol cos2kmxdr = 0
\ fol sin2krxdr = 0,

where § is the sequence defined by 6(k) =0 for all k # 0 and 6(0) = 1.
Proof. Direct integration. O

The above lemma can be summarized as saying that the family of functions
{1,V2 cos 2kmx, V2 sin 2kmx}3S | = {1,v/2cos 2rx, V2 sin 2mz, V2 cos 4w, V2 sin 4w, . .}

is an orthonormal set in L?[0,1).
Using Lemma 2.2.1 we can prove:

Theorem 2.2.1. If f(x) = ag + Y o, ay cos 2kmx + by, sin 2kmx, then

ao — /0 @) de

1
ap = 2/ f(z) cos 2kmx dx
0
1
by = 2/ f(z)sin 2kmx dx
0
Proof. Straight computations. O]

Definition 2.2.3. Given f(x) = ag+ Yo ai cos 2kmx + by, sin 2k, the coefficients
ag, ax, by, k > 1 given in Theorem 2.2.1 are called the Fourier coefficients of f.

Example 2.2.2. Find the Fourier coefficients of f(x) = xp1(x), g(r) = x and
h(z) = sin 27z + 5 cos 6mx — 4 sin 10mz where = € [0, 1) and the functions are consid-
ered 1—periodic.

13



Remark 2.2.1. From the above we can view the Fourier series of f as a transformation
that sends the function f to its Fourier coefficients {ag, ax,br : k& = 1,2,...} which
are defined in Theorem 2.2.1. More specifically, we have

fH{ao,ak,bk:kzl,Z...}.

The question that comes to mind is the following: For which functions can one
compute the Fourier coefficients and thus form a Fourier series? One can prove
that for any function that is integrable on L'[0,1), the Fourier coefficients can be
computed. Hence the Fourier series can be formed. The next question is whether
this Fourier series converges, and if it does what is the limit? We will just touch upon
certain aspect of these questions in the lecture.

2.2.3 Fourier series on other interval

Theorem 2.2.2. If f(x) = ap+ Yo, ax cos(2kmx/T)+ by sin(2kwx/T) is T periodic,
then

T/2
ag = 1 f(z)dx
~T/2
T/2
ap = %/ f(z) cos(2kmx/T) dx
—T/2
T/2
b = 2 / f(z)sin(2kmx/T) dx
-T/2
Proof. Just use a change of variable. m

Example 2.2.3. Consider the 2—periodic function f defined by

]

r if ze€l0,1
1,2).

f(x):{ 1 if zell,

Find the Fourier series of f.

2.2.4 Sine and Cosine Fourier series

Definition 2.2.4. Let f : R — R be a function. f is an even function if f(—z) =
f(z) for all z € R. f is an odd function if f(—z) = —f(x).

The following result about the integration of even and odd functions is easy to
prove.

Lemma 2.2.2. Let f : R — R be a function.

14



o [f f is an even function and if a € R the

/_ F(a)dr 2/: f(a)dz

o If f is an odd function and if a € R the

IRECE

Example 2.2.4. (i) Assume that f is a 1—periodic and even function. Find the
Fourier coefficients of f.

(ii) Assume that g is a 1—periodic and odd function. Find the Fourier coefficients
of g.
Solution 2.2.1. (i) ay = fol f(x)dx = f_lﬁz dr = 2f1/2
ap = 2 fol ) cos(2mkx)dw.

=2 fo )sin(2rkx) de = 2 f "y () sin(2mkz) dx = 0 because f(x) sin(27kz)
is an odd functlon

(i) a fo r)dr = f 12 9(z)dz = 0 because g is odd.

ap =2 fo x) cos(2rkx)dx = 2f 12 9(@) cos(2mkx) dx = 0, since g(x) cos(2mkz)
is odd.

b = 2 fol g(z) sin(2rkz) dx.
Theorem 2.2.3. Let f be a 1—periodic function defined from R into R.

(i) If f is even and {ag,ar, by : k = 1,2,... 00} are the Fourier coefficients of f
then b, = 0 for all k > 1. Consequently, the Fourier series of f reduces to

f(z) =~ ap+ Z a, cos 2kmx.
k=1

(1) If [ is odd and {ag,ar, by : k = 1,2,...,00} are the Fourier coefficients of f
then ar, = 0 for all k > 0. Consequently, the Fourier series of f reduces to

~ Z by, sin 2kmzx.
k=1

Example 2.2.5. (i) Let f : [0,1/2) — R defined by f(x) = z. Find the even
1—periodic extension of f, and find the Fourier series of this extension.

(ii) Let f:]0,1/2) — R defined by f(x) = z. Find the odd 1—periodic extension
of f, and find the Fourier series of this extension.

15



2.2.5 Complex form of the Fourier series

Exercise 2.2.1. For each integer m € Z, that is m = 0, £1,+2, 43, ... let e, (z) =
e?™me for € R. Thus e,, : R — C by e,,(x) = e*™™m2.

a) Prove that e, is a 1—periodic function.

b) Compute the inner product between e,, and e, for any m,n € Z. That is what is
(€m,en)?

c) Let f: R — R be a 1—periodic function whose Fourier coefficients are ay, ay, by,
k> 1. Let ¢, = (f,ex) for each k € Z. Find a relation between ¢y and ag as well as
between ¢y, ai, and by, for each k > 1.

Solution 2.2.2. a) For each x € R,

6m<l’ + 1) _ €2mm(m+1) _ €2mm$+2mm _ 627rzm:c€27rzm _ 62mmm _ em(x).

Hence e, is 1—periodic.
b)

1 1 1
<6m7 en) = / em<x)€n(ﬂf) dr = / e27rimac€727rimr dr = / 627ri(mfn)xdx‘
0 0 0
If m # n then, m —n # 0 and

m—n)

I 1
/ 2mim=n)z gy ::/ dr = 1.
0 0
¢) Assume that £ > 0

Ck = <f7 €k>

= f(x)er(x)dx
0

= / f(z)e 2 ke dy
0

1
= / f(z)(cos2mkx — isin 2rwkx)dx
0

1
/0 627ri(m—n)a:dx — 2m'(l e27ri(m—n):r‘(1) = 0.

If m = n, then

1 1
= / f(z) cos 2rkadx — z/ f(z) sin 2rkxdx
0 0
— Ok

by,

=5 — ==

2 2°

If k <0, the —k > 0 and
1 ' 1

ek = (f,ex) :/ f(z)e 2™k dy :/ fa)e2mi-Frdy
0 0

16



hence,

1
Cp = / fx)e=2mit-Rady = (f e_y) = % + %k,
0

1
co = (f,e0) = / f(z)dx = aq.
0
Note that for k£ > 1, ¢, = c_; and so:
ag = ¢, + ¢ = cx + c_pand by, = i(cx — ) = i(cx — c_g).

Theorem 2.2.4. Let f : R — R be a 1—periodic function. If f(x) = Y oo cpe’™re
for x € [0,1) then

1
Cp = / f(x)e—%rikxdx’
0

and {cx : k = 0,£1,+2,43,...} are called the complex Fourier coefficients of f.
Moreover, these complex Fourier coefficients of f are related to the Fourier coefficients
o, ak, by, by:
— — Ak ; bie
Co = Qp, Ckp = 5 —27

when k> 1. For k < —1, ¢, =¢_.

2.3 Convergence of Fourier series

2.3.1 Partial sums of a Fourier series

Throughout this section we assume that f : R — R is 1—periodic. Denote by

F(x) =ap+ Z ay cos 2wkx + by, sin 2wka
k=1

where ag, ag, by, are the Fourier coefficients defined in Section 2. For each K > 1 we
define the Kth partial sum of this Fourier series by

K
Fr(z) =ay + Z ay, cos 2kx + by, sin 27k (2.3)
k=1
Our goal is to give condition on the function f such that F(x) := limg_ o Fi ()

exists and equals to F(z) = f(z) for x € [0, 1).

Remark 2.3.1. Note that for any 1—periodic function f, if fol |f(z)|dz < oo, then the
Fourier coefficients ag, ax, b or ¢ can be computed, and thus the Fourier series F'(x)
given above can be formed. Thus the Fourier series of every function in L([0, 1)) is
well defined.

Question: What about a function in L?[0,1)?
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2.3.2 Riemann-Lebesgue lemma

Theorem 2.3.1. Suppose f is a T —periodic and piecewise continuous function, then

T T T
lim / f(z)cos(2mkx/T) dx = lim / f(z)sin(2rkx/T) dx = lim f(x)e 2 ka/T o — 0,
0 k—oo Jg k—oo Jo

k—o0

Proof. First assume that f(z) = Zgil dnX[anb) (@) is 1—periodic, and compute
its Fourier coeflicients. Notice for each n = 1,2,...,N we have cx(X[anpn) =

bn 2nkan _ ,—2mikb .
fa" e ke dy = e T . Clearly, this sequence converges to 0 as k — oo and
n

so will any finite combination of such functions.
The remaining part of the proof consists of approximating any piecewise smooth
function uniformly by simple functions as above. O

Theorem 2.3.2. Let [ be a 1—periodic function. Assume that f' exists and is contin-
uous except at finitely many points. Let ¢y, denote the (complex) Fourier coefficients of
f, and denote by ¢, the Fourier coefficients of f'. Then for each k = +1,£2, 43, ...

¢, = (2mik)cy,.

More generally, if £ exists and is continuous except at finitely many points in
[0,1), and if c,(cn) denotes the Fourier coefficients of f™ (x) then

A" = (2mik) e,
for each k = +1,4+2,4+3,....
Proof. Use integration by parts. O]

2.3.3 Pointwise convergence of Fourier series
Theorem 2.3.3. Suppose that f is continuous and 1—periodic. At each point x
where f is differentiable, the Fourier series of f converges to f(x), that is

K
I}l_rgo ap + ; ag cos 2mkx + sin 2rkx = f(z).

To prove the theorem we need some preparations.
Lemma 2.3.1. For each x € [0,1) let
Py(u) =1+ 2cos2mu + 2 cosdmu + 2 cos 6mu + . .. + 2 cos 2N7u.

Then, .
sin(2N+1)mu u 7& 0

P = sin Tu )
w(u) { IN+1 : u=0

Moreover,

/01 Py(u)du = 1.
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Proof. Based on geometric sums.

0
Proof. : Proof of Theorem 2.3.3 Consider the N — th partial Fourier sum:
N
Fn(z) =ag + Z @y, cOs 2mnx + b, sin 27nx.
n=1
N
Fn(x) =ap + Z @y, cos 2mnx + b, sin 2mnx
n=1
1 N 1 1
= / f(u)du + Z 2/ f(u) cos 2mnudu cos 2mnx + 2/ f(w) sin 2rnudu sin 2rnz
0 n=1 0 0
1 N
= / (1+2 Z cos 2mnu cos 2mnx + sin 2rnu sin 2nx) f (u) du
0 n=1
1 N
= / (1+2 Z cos 2mn(u — z)) f (u)du
0 n=1

_ /01 Pa(z — u) f (w)du
— /;_1 Py (u) f(u+ x)du

_ /01 Py (u) f(x + u)du.

Now look at

1

f(2) - F(z) = / £(2) Py (u)du — / Py (u) f(z + u)du
- / (f(2) — f(x + )Py (u)du

0

sin Ty

1
/ J@J @) Gin (N 4 1) rudu.
0

Now if we denote bu g,(u) the function

gul) = Ll

it is clear that g, is well defined an continuous for v # 0. Now

lim g, (u) = lim [ faty) —rf'(x)

u—0 u—0 S
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. Thus g, is defined and continuous for all u and by Riemann-Lebesgue lemma we
have

1
A}im f(z) — Fx(z) = lim J@ Tt 6y (2N 4 1)mudu = 0.
—00

N—00 0 sin Tu

]

In fact, a following stronger result holds. Recall that a piecewise smooth function
is a continuous function that is differentiable everywhere except possibly for a discrete
set of points.

Theorem 2.3.4. If f is 1—periodic and piecewise smooth on [0,1) then the Fourier
series of F' converges uniformly to f on [0,1).

Remark 2.3.2. What happens at a point where f is not continuous? If f has a (finite)
jump discontinuity and if f is right-differentiable and left-differentiable, then we can
still use the above proof with some modifications.

Example 2.3.1. a) Let f(x) be the even, 1—periodic function given by f(z) = x
for x € [0,1/2). Prove that the Fourier series of f converges to f at each point
x € [—1/2,1/2). Does the Fourier series of f converge uniformly?

b) Use part a to find the values of >~ m

2.4 Fourier series in [0,1): the L? theory

Recall that
{1, V2 cos 2mx, /2 sin 27, . . 3 =A1, V2 cos 2mkx,V2sin 2rkx k= 1,2, .. 3
is an orthonormal set in L?[0,1), and so is
{e*™ = 0,+1,42,43,...}.

Note also that L?[0,1) C L'[0,1) and so it makes sense to compute the Fourier
coefficients of any L? function.

Theorem 2.4.1. Let f € L*[0,1), and

N
fn(z) =ag+ Z ay, cOS 2mnx + b, sin 2mnx

n=1

where ag, ay, by, are the Fourier coefficients of f. Then fx converges to f in L*[0,1)
that is || fx — fll2 = 0 as N — oc.

Similarly, if
N

fN(I) Z Cn€2m'nm

n=—N

where ¢, are the complex Fourier coefficients of f, then fn converges to f in L*[0,1).
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The following are two very important results about the L? theory of Fourier series.

Theorem 2.4.2. Let

flx)=ao+ Z ay, cos 2wk + by sin 2wk € L?[0, 1)
k=1

Then

(]
=1

1
/0 @) dr = a2 + 1S Jail? + e
k

Similarly, if

o0

fz) = Z cn€®™ € L]0, 1)
then . -
/0 f@lPdr=3 ledf?

n=—oo

2.5 Other properties of the Fourier coefficients

2.5.1 Convolution

Definition 2.5.1. Let f, g be two 1—periodic function. The convolution of f and g
is the function defined by

frgx) =g flz) = / f()glx — tydt.

Theorem 2.5.1. Let f,g be two 1—periodic and integrable functions. The f x g is
1—periodic and its Fourier coefficients are given by

cn(f x g) = cn(fen(g),

for eachn =0,+1,£2,....
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Proof.

cn(f xg) = / [ gle)e ™ dy

/ / ft)g(x —t)dt e *™"* dx

_ /0 £(#) /0 gz — t)e 2 gt
= /0 1 f(t) /_ 1tg(y)ez’”"(y“)dydt

— 6727m'nt ! 6727rmyd d
/0 ft) /O 9(y) ydt
:/O f(t)e—Qm'ntcn(g)dt

=c (

fen(g)

2.5.2 Other properties

Exercise 2.5.1. Let f : [0,1) — C be a 1—periodic function with Fourier coefficients
¢, Find the Fourier coefficients of f, f(—z), and f(—z). What can conclusions can
be drawn?

Solution 2.5.1.

en(f) = / 1 fz)e ™ de = / 1 f(a)erminzde = c_p(f).

— /1 f(—x)e_Q’”mdx
0
-1
_/ f(a:)e2mmdx
0
0
:/ f(l’)eandeT
-1
1
:/ f(l,)€27rinxdx
0

= Cn(?

~—~
~ | ~
~—

22



Note that if f is real-valued, then f(x) = f(x) and so in the last formula we have

From this exercise we get the following results:

Proposition 2.5.1. let f:[0,1) — C be 1—periodic.

(i) If f is real-valued then
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Chapter 3

Fourier transform

3.1 Definition and examples

3.1.1 Definition

Definition 3.1.1. Let f : R — R be a function such that [ |f(z)|dz < co. The
Fourier transform of f is the function f : R — C defined by

fon= [ s, 3.)

The inverse Fourier transform is given by
fla) = [ fepemnas, (3.2
Remark 3.1.1. (i.) Notice that for any real-valued function f, the Fourier transform

is complex-valued.

(ii.) The Fourier transform of f is defined as long as the indefinite integral
/ |f(z)|dx < oo.

The space of all such function will be denoted

LI(R):{f:R—HR:/OO |f(z)|dx < oo}

—00

This is a vector space on which one can define a norm by: for f € L'(R),

1l = / @)

—00

Question: Give example of functions in L'(R).

24



Proposition 3.1.1. If f € LY(R), then its Fourier transform f is a bounded and
uniformly continuous function on R. In particular,

F) < ]

for all v € R.
Proof. The fact that f is bounded follows from

fool=1 [ f@e = < [ f@e = ldo = [ @iz =171,

—0o0 —0o0

foreach y € R.
To prove that f is uniformly continuous, first assume that f is smooth and equal
0 outside an interval [—a, a]. Then, for 7,7 € R

fo) =l =1 [ fa)e s - ey

= / F(@)(e 27 — =2 gy
T

< [ @it - s
@l - e

=2 [ |f@llsinra(y —7)lds

< Varly =l [ lof@)lds

< V3arly 71 flh.

The proof for general f € L'(R) uses the fact that any such function f can be
approximated with a smooth function that is 0 outside an interval [—a, a] for some
a > 0. [

Let
L>*(R) = {f:R—>(C15161£|f(x)| < o0}

then L™ is a vector space equipped with the norm

[flloe = sup [f ()]
Tz€R
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It follows that the Fourier transform is a map
F:L'R) = L¥(R)

given by R

F(H) = f(v).
The inverse Fourier transform will be seen as the inverse F ! of this map. We will
describe the properties of the map F in the next section.

Exercise 3.1.1. Justify informally why F~! is the inverse of F.

3.1.2 Examples
Let f be defined on R by

1 x| <12
f@)_{o |z > 1/2

For v € R, and v # 0,

Fon = [ fageme

1/2
= / le ™ dy
~1/2

-1 6727m'z'y|$=1/2
T 2miy x=—1/2
_ -1 -y Ty
27ri’y(e € )
67ri'y_6—7ri'y
2miy

2isin 7y
2y

__ sinmy
Ty

For v = 0 we have
R 00 . 1/2
f(0) = / f(x)e ™0y = / ldx =1
~1/2

Therefore,

Notice that R .
lim f(y) = lim =2 =1 = f(0).

~—0 =0 T
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So f is a continuous function on R. The function f (v) = % is called the sinc
function and is denoted:

sin 7y
Ty

sinc(y) =
For the second example let: g(x) = f * f(x), where f is defined above. Then

mwz/mﬂwu—wﬁ

1/2
= flz —t)dt
~1/2
z—1/2
—— [y
1/2+a
z+1/2
[ rwiy
z—1/2

Ifx+1/2<-1/2, thatis, v < =1 orif z —1/2 > 1/2, that is « > 1, then g(x) = 0,
as the integrand in the last integral vanishes. So we must consider only x such that
lz] <1. If -1 <2 <0, then —1/2<z+1/2<1/2and -3/2<2x—-1/2<—1/2,s0
the last integral reduces to

z+1/2 z+1/2
9(93)—/ f(y)dy—/ dy=24+1/24+1/2=2+1.
—1/2 -1/2

FOo<x<1/2,1/2<z+1/2<1and —1/2 <x —1/2 <0, so the integral defining
g becomes

1/2 1/2
g(x)—/ f(y)dy—/ dy=1/2—az+1/2=1—x.
Z‘—l/2 x—1/2

Therefore,

R I
9(9”)—{ 0 ¢ |of>1
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The Fourier transform of g is now given by: Let v # 0.

g(v) = /_ " gy d

[e.9]

1
:/ (1 — |z|)e ™" dx

1

0 1
- / (14 z)e ™ dy +/ (1 —z)e ™" dy
-1 0
o _(]__l,_x)e*%""/z 67271'1'7:0 0 _(
— 2miry + 4m2~2 |*1 +
2—2cos 27wy
422

4sin? 1y

471.272
sin? 7y
2

1_x)€727r'yz N e—2mivT |1
27y 4rm2~2 10

= T

§(0) = / (1 af)dz = 1.

1

We will compute the Fourier transform of h(z) = e, in the next subsection.

3.2 Properties of the Fourier transform
Theorem 3.2.1. For any f € L'(R),

lim f(y)=0.

|v|—o0

Proof. This is the Riemann-Lebesgue lemma. To prove it, first assume that f is
continuous and f(z) = 0 for all |z| > A for some large A > 0. This f can in turn be
approximated by a piecewise constant function, for which the theorem holds. O

From now on we will view the Fourier transform as an operator that is a function
whose domain is a subspace of functions. This operator was denoted by F. We now
list some properties of this operator.

Theorem 3.2.2. Let f and g be defined on R such that f is smooth and f(x) =0
for |z| large. Assume that g € L*(R). Then the following hold:

(i) F(f+g) = F(f)+ F(g) and for any constant a, F(af) = aF(f). We say in
this case that F is a linear operator.

(i) Fa f(@)(7) = o 2 F()()
(iii) For any constant a, F(f(x — a))(y) = e *™TF(f)(7).
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(iv) For any constant a, F(e*™ f(z))(v) = F(f)(y — a).
(v) For any b € R, F(f(bx))(7) = 37 (f)(7/0).
(vi) For anyn, F(f™)(y) = (2miy)"F(f)(7).

Exercise 3.2.1. Find the Fourier transform of h(z) = e~™’ by proving that h is
the solution to ¢ + 27yy = 0 and y(0) = 1.

Solution 3.2.1.
W (7) :/ e (—2miz)e " dy
= z/ (—2mrze ™ )e 2 dy

o0
. —qx? —9omi . — 2 . — 27
— e e 27rzm’y|<iooo_l/ e~ (—271'2’)/)6 27rzz'ydl,
—0o0

0
. —rx? —2mi
— 271_227/ e o 27rm:'ydx

which shows that R X
W (y) +2my(h)(v) = 0.
But A(0) = [ e~ ™dx = 1. Thus, h(y) is the unique solution to the given initial

value problem. But this is a linear first order equation and its solution is y = e~ ™.
Therefore, h(y) = e~ ™",

Theorem 3.2.3. If f, g are integrable functions, then f x g defined by
frglx)= / fW)g(z —y)dy = / 9W)f(x —y)dy = g = f(x)
15 integrable and

~

Frg() = f(0a0).
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Proof.
Frat) = [ frgle i
— [ gt~ ydye s
~ [ tgta = ey
_ /_ Z ) /_ Z (@ — y)e ™V dady
[ 1w [ gtwe e dudy

[e.9] [e.9]

= / fly)e / g(u)e ™ dudy

[e.9]

- / Fy)e 2 f(y)dy

=f(v) | fly)e Ty

3.3 L? theory of the Fourier transform

Definition 3.3.1. Let f € L*(R), be given. The Fourier transform of f is the L*(R)
function f that is defined by

n

f) = lim [ f@)e N da

where the limit is taken in the L? sense. That is

o0

im [ 100) = [ flae iy o

Theorem 3.3.1. If f, g € L*(R), then the following hold:
(i) (f,9) = (F(f), 9012 = (/, F~"(9)) 1>
(i) (f,3) = (f.9).

In particular, A
1 fllz2@) = 1 f 2
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Note that the fact that <fa g) = (f, g) is called Plancherel theorem and ||f||L2(R) =
| fllz2(r) is Parseval identity.

Example 3.3.1. Let f be defined on R by
1 x| <12
m)—{ 0+ |z >1/2
Prove that A
1f]lz2 = [lsineyl| 2 = 1.
3.4 The Heisenberg Uncertainty principle
Definition 3.4.1. Given a function f € L?(R), we define the dispersion of f about

a point a € R by

> :v—a2 (L'ZCL'
A, f = Ll lfE)d

Note that if -
12 = / @) Pde = 1,

oo

then | f(x)|?dx can be interpreted as a probability distribution of R and A, f is just
the variance of this probability distribution when a = [*_z|f(x)[*dx.

Theorem 3.4.1. Given any a,b € R, we have

I (@—a)?|f(2) 2 dx [22_ (v=b)2|f ()2 dy 1
= 1672

AufAf =

T2 17172 gy
for all f € L*(R).

If we take a = [*°_z|f(x)[?dz, and b = [*°_~|f(7)[?dy, and if we assume that

1 £Ilzz = | f|l2 = 1, then the Heisenberg uncertainty principle reduces to

/Oo (z — a)?|f(z) dz /oo (v = b2 If (NP dy > 1.

o0 —00

In particular, A,f and A, f cannot be made small simultaneously. Therefore, if a
function is well localized in space (or time) (x—variable), then it cannot be well-
localized in frequency (y-variable).

31



3.5 Linear time-invariant transform

We consider transforms (that is functions acting on other functions) that are defined
on the vector space of all piecewise continuous functions.

Definition 3.5.1. A transform L is linear if L(f 4+ ¢g) = L(f) + L(g), and L(af) =
aL(f) for any f, g and any scalar a.

A linear transform is time-invariant if L[f(x —a)] = L[f](z —a) for every function
f and any scalar a. This means that the image under L of a delayed signal, is the
same as the delayed image L(f).

Example 3.5.1. Prove that L{f](z) = [ f(s)ds is linear but not time-invariant.
Prove that L[f](z) = h % f(z) where h € L'(R) is a linear time-invariant trans-
formation.

Theorem 3.5.1. If L s a linear time invariant transformation on the space of
piecewise continuous functions, and if v € R is fived, then there exists a function
h:R — C such that
L(e27ri'yx) _ }Al<fy>€27ri'y:r.
In addition,
L(f)=h=xf.

Proof. We only sketch the proof of this result. Let a € R be fixed and let v € R.
Set g,(z) = ¥ and g,.(x) = g,(x — a) = ¥(@=9)_ Using the fact that L is
time-invariant we can write:

L(gy.0)(x) = L(gy)(x—a). On the other hand, g, () = e~ ?™e2™1% = ¢=2™%g_(z).
Using the fact that L is linear we can write: L(g,q)(x) = e *™7L(g,)(z). Conse-
quently,

L(gya)(x) = L(gy)(x — a) = e ™" L(g,) ().

Since this holds for arbitrary a, if we choose x = a we see that

L(g)(0) = e L(g, ) ()

and so A
L(g)(x) = L(g)(0)e*™™.

We can define the function h by letting k() = L(g)(0). This completes the proof of
the first part. R

For the second part, we use the fact that L is linear and f(z) = [7_ f(7)e*™"dx
to write

L(f)(z) = /_OO FO)L(e*™ ) dy = /_OO FO)R(y)e* ™ dy = hx f(z).

Note that we have used the fact that the integral defining the inverse Fourier trans-
form can be approximated using (finte) Riemann sums. O
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The function h(z) defined in Theorem 3.5.1 is called the impulse response function
of the linear time-invariant transformation L.

Example 3.5.2. Find the impulse response of each of the following linear time-
invariant transformations:

(i) L, filters out all frequency above B /2 and below —B; < /2.
(ii) L3 retains only frequencies 7 such that By < |y| < By

, where By, By are some positive numbers.

3.6 The Sampling Theorem

Definition 3.6.1. A function f € L*(R) is said to be band-limited is there exists
B > 0, such that

f(n =0 hl>B/2
The smallest number B, for which the last equation holds, is called the bandwidth of
f.
Example 3.6.1. (i) f(z) = %22

sin

(ii) g(z) =™ x =21

Remark 3.6.1. A function f € L*(R) is called time-limited if there exists T > 0, such
that
f(x)=0 |z| > T/2.

Note that by the Heisenberg uncertainty principle, it is impossible for a non-zero
function to be both band-limited and time-limited.

The following theorem is known as the Shannon-Whittaker Sampling Theorem

Theorem 3.6.1. Let [ be a band-limited functz’on with bandwidth B > 0. f is com-
pletely determine by its values at the points £ 5, Jor k=0,%£1,£2,.... In particular,

Z f(k/B)sincB(x — k/B) = Z f(k/B) s‘igimkféB) (3.3)
k=—o00 k=—00
where the series converges uniformly.

Proof. Write the (complex) Fourier series of f(7) considered as a B—periodic func-
tion. [
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Lemma 3.6.1. Given B > 0, we denote the space of band-limited functions with
bandwidth B, by

PW(B) ={f € L*(R): f(y) = 0,]n| > B/2}.

It follows that {v/Bsinc|B(z — k/B)] = \/E% k=0,+1,4+2,...} is an
orthonormal basis for PW (B).

In fact, Let f be a band-limited function with bandwidth B. If T" > 0 is such
that 0 < T'B < 1, then f can be reconstructed from its samples at k7T, with k =
0,£1,£2 43, .... In particular,

=T Z f(kT Smﬁg ZE; Z F(ET) —S‘;r”fkf/f] — Z F(ET)sinc[(x—kT) /T,

k=—o00 k=—00 k=—00

where the series converges uniformly. The condition T'B < 1 is equivalent to T' <
1/B. The case T' = 1/B is exactly what we proved in Theorem 3.6.1. The rate of
sampling 7" = 1/B is called the Nyquist rate, and the condition TB < 1 is called
the Nyquist condition. The conclusion we take from here is that any band-limited
function can be reconstructed from its samples taken at a sampling rate satisfying
the Nyquist condition.

34



Chapter 4

Generalized functions on R

We would like to give a rigorous meaning to expression such as

/fiﬂmﬁ@@&v—¢anzzé¢ﬂwe”ﬁdm—j{¢}

For what type of functions ¢ can the above expression makes sense? How do we
interpret these expressions?

4.1 Schwartz functions

Definition 4.1.1. A function ¢ : R — C is called a Schwartz function if ¢ is infinitely
continuously differentiable, that is ¢', ¢", ¢®, ... exist and are continuous and if

lim 2"¢™(z) =0,Ym=0,1,2,...,n=0,1,2,....

|z|—o00
The set of all Schwartz functions will be denoted S

Example 4.1.1. If f(z) = e ™, then f € S.

Let g(x) = 2212 Js g € S?

Given any a < b, there exists a function ¢ € S such that ¢(z) > 0if a < x < b,
¢(r)=0ifz <aorxz>D.

In fact, given any a < b < ¢ < d, there exists a function ¢ € S such that ¢(x) =0
forx <aorxz>d ¢p(x)=1lisb<z<e ¢(r) >0fora<xz<band ¢'(x) <0 for
c<x<d.

Exercise 4.1.1. Let p € [1,00]. Prove that if ¢ € S, then ¢ € LP(R), that is
7 lo(x)Pde < 00 if 1 < p < o0, and sup,ep |¢(x)] < 0.

Prove that if ¢ € S, then ¢(™ € Sforallm=1,2,....

Prove that if ¢ € S, then 2"¢(x) € S for all n = 1,2, .. ..

Prove that if ¢ € S, then 2"¢™ (z) € Sforalln =1,2,...,.m=1,2,....
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Lemma 4.1.1. S is a linear space: if ¢1,¢2 € § and a,b € C, then apy + bopy € S.
If o1, 09 €S, then ¢1 * ¢o, 102 all belong to S.

Proposition 4.1.1. If ¢ € S, then ¢(7) = [ d(x)e >™"dx € S and ¢(z) =
[ B,
Proof. Give the proof in class. ]

What is a functional? 6{¢} = ¢(0) for ¢ € S is a "function” whose domain is S!
This is an example of functional.

Definition 4.1.2. Let f be a function defined on R. The fundamental functional
corresponding to f is the functional defined on S by:

f@}:/ffuwmwx

Remark 4.1.1. For ¢ € S we define the Dirac delta functional by

o} = 6(0) = [ da)o(o)de
Definition 4.1.3. A function f: R — C is said to be slowly growing if
lim fm(:) =0
|z|—o0

for some choice of n =10,1,2,....

If in addition f is continuous, we will say that f is a continuous slowly growing
(CSG) function.

Example 4.1.2. (i) Any function f € S is CSG.
(ii) Any polynomial is CSG.
(iii) sinz,cosx,In |z|,zIn |z|

Proposition 4.1.2. Let g be a CSG function, and let ¢ € S. Prove that gp is a CSG
function. Moreover, prove that g € L'(R).

Given any CSG function g we will associate the fundamental functional defined
by

o6} i= [ g@olalds,
for each ¢ € S.

Assume that ¢ is CGS and has a derivative ¢’ which is also CSG. Then for each
¢ € S we have
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Consequently, we can define

dwy:—[fm@d@wn

for ¢ € S. ¢’ will be called the generalized derivative of the CSG function g.
More generally, the nth generalized derivative of the CSG function g is defined by

o0

¢MW}:«4W/’g@wwumm

for ¢ € S.

Definition 4.1.4. We say that f is a generalized function if f = ¢ for some choice
of CSG function g and for some nonnegative integer n.

Remark 4.1.2. Given two generalized functions fi, fo and a < b we will say that
fi(z) = fo(x) for x € (a,b) if fi{p} = fo{@} for all ¢ € S with ¢(x) =0 for x < a or
x > b.

If a = —o0 and b = oo, then fi(x) = fo(z) for z € R if fi{o} = fo{p} for all
@ € S.

Example 4.1.3. Show that f(x) = sgn(z), f(x) = Lz, and f(x) = In|z| are
generalized functions.

4.2 Common generalized functions

Find and simplify the functional that is used to represent each of the following gen-
eralized function

(a) pp(x) =2",n=0,1,2,...,

Note that each of the functions p, is CSG, thus for each ¢ € S,

oo

pdo} = [ an(a:)¢(:c)d:c: | wotwar

—00
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Now, the generalized derivative of p,, is
P = | mle)d@is = - [ ard@de=n [~ e to(epds = np,oi (o)
Thus, p), = np,—_1.

c(x) = cosz, s(x) = sinz. For each ¢ € S we have
Ao} = / cos xp(x)dz, and s{¢p} = / sin x¢(z)dx
Moreover,

o} =— /_OO cos z¢ (x)dx = — /_OO sinzg(z)dr = —s{¢}

[e.9] [e.9]

, and so ¢ = —s. Similarly, s = c.

ror' ", r(™ where

z . x>0
") =10 . z<o

r is a CSG and so for each ¢ € S we have

oy = [ rta dw—/mw( )da

{6} = - /_Oor<x>¢'<x>dx=— et = [ o = e

o0

where H is the Heaviside function defined by

1 x>0
H(I):{o L 2<0

r"{o} = (1) / h r(z)¢" (z)dx = / z¢"(x / ¢ (z ¢(0) := 6(o)

—00 0

So the Dirac delta function is the generalized function given by 0 := r”. Note
that 60 = r("*2) and 6™ {¢} = (—=1)"¢™(0).

¢,qdq",...,q"™ where q(z) = fow T(t)dt with 7(x) = Lza=mifm <z <m+1,
and m =0,£1,£2,....

38



7 is slowly growing but not continuous, however, ¢ is CSG. Thus for ¢ € S we

have {6} = [ g(@)(x)de, and

[e.9]

0 =- [ awswi= 3

m=—0oQ

[ s

Now ¢'(z) =mform <x <m+1and m=0,£1,4+2,....

o0 m+1

dot = 3 [gm)o(m) — qlm+ 1)o(m +1) + / m(z)de

m=—o0 m

- / T @)é(a)dr = {6}

(0} = (17 [ ala)o(@)da
=3 [ o

m=—00

= Z mae(m) —me(m + 1)

m=—00

comb{} = Y ¢(m).

m=—00

This is the Comb generalized function. It is immediate that

comb™{g} = (=1)" 3 ¢ (m).

m=—0o0

(d) €,0,0", ... 0™, where {(z) = [ In|t|dt = zIn|z| — 2. ¢ is CSG so if ¢ € S we

e (o} = / ()6 (x)dx / (x1n || — 2)6(x)dz.

0o} = — / (2)¢!(x)dz = / In Jo|(z)da

Justify why ¢/ = 27! = p_;. In particular,

¢{6} = p-1{0} = Jim / H2)=(0) g
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To prove this statement, let ¢ € S and define ¢1(z) = ¢(x) — ¢(0). Observe
that ¢, is continuous, but not in S (why?). Also, ¢} (z) = ¢'(x) for all z. Now

10} = (-1° [ (elalal - 2)o" @)

o0

- _/Oo In |2|¢ () dz

o0

—— [ el @i

o0

—€ L
= lim lim —/ ln|x]gz5’1(x)dx+/ In |z| ¢} (x)dz
-L

L—00 e—01 ¢

e L
= lim lim [1n\x|¢1(:z:)|:z+/ %@dw—lnlﬂf\fbl(ﬂ:)\%/ a2 dy
-L

L—00 e—=0t €
L

= lim 212 o
L—oo _L x

where the continuity of ¢; was used and lim,_,In|z|¢;(z) = 0.

4.3 Operations on generalized functions

4.3.1 Linearity

If f1, fo are two generalized function and if ¢, ¢y are two scalars, then c; fi + cofs
is also a generalized function. The collection of all generalized functions is a linear
space denoted G.

4.3.2 'Translate, dilate, derivative, Fourier transform

For zyp € R and ¢ € S we let Ty é(z) = ¢(x + x0). If @ > 0, then S,¢(r) = ¢(azx).
Do(z) = ¢/(x), and Fo(z) = o(x).

4.3.3 'Translate, dilate, derivation, and Fourier transform

Proposition 4.3.1. Let f be a generalized function, let xqg € R,a € R, define then

fl(x) = Txof(x) = f(CC + l’o),f2<l’> = Saf<x) = f(CLiC),f3(LC) = Df(l’) = f’(l’), and
fa(s) = Ff(s) = f(s) all defined generalized functions. In particular, for each ¢ € S

we have

{6} = Too f10} = HT s} = / " H@)é(r — xo)d

0k = Suf {0k = Hf(Suatk =& [ re)otafa)ia
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fald} = Df{0} = {6} = / " f@)d (0)de

[} = F(H{6) = o) = / " F(s)d(s)ds

Example 4.3.1. Simplify: 6" (z — 5), comb' (z), py, 6, p_1.

Remark 4.3.1. Given a function ¢ € S we can define the following new functions:

¢E<£L‘) = ¢(—x),¢T<£L‘) = ¢(—l‘),¢7(l‘) = M

We can then define similar operation of generalized functions: if f € G, then for each
¢ € S we have

fo} = f{o}. fHe} = Ho') f{o} = flo7}.

Then the generalized function f is even if f = f, odd if f = —f, real if f~ = f, pure
imaginary if f~ = —f, hermitian if fT = f, and anti hermitian if ff = —f

4.3.4 Multiplication and convolution

Let a be a function on R such that «, o/, ”, ... are all CSG. Then given a generalized
function f € G, we can define the product of a and f to be the generalized function
given by
- f{o} = f{ag},

for each ¢ € S.

Let 3 be a function on R such that 3, 3/, 3", ... are all CSG. Then given a gener-
alized function f € G, we can define the convolution of 3 and f to be the generalized
function given by

B+ e} = f{o* 5},
for each ¢ € S.

Example 4.3.2. Find a(z) - 6(x — z0)
Prove that for each generalized function f, we have § x f = f.
Prove that = - p_;(z) = 1.

Prove that a - §®) (2 — 24) = 25:0 (lz)(—l)k_fa(k_é) (20)00 (2 — z0).

If gisa CSG and ¢ € S, ¢ * g™ = [p % g]™ = ¢" x g. In fact, if f is a generalized
function given by f = ¢ for some CSG ¢ and n > 0, and if ¢ € S we have
¢xf=0"xg, (¢pxf) =¢" D xg,. ...

Exercise 4.3.1. Can the following be defined? § -6, - p_q, 1% 1,2 % 237

Is it true that [f1- fa] - f3 = fi1-[fo f3], [f1* fo] * f3 = f1 % [fo* f3]? Hint consider
d,z,p_1 and 1,¢', and sgn(zx).
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4.3.5 Division

Let g be a generalized function and « be a function such that a, o/, @”, ... are all CSG.
If 1/a,1/a/,1/a”, ... are all CSG then there exists a unique generalized function f
such that - f = ¢. In fact, f ==

Example 4.3.3. Find f € G such that e . (x) -
Does there exists f € G such that e=™" . f(z) =

Proposition 4.3.2. The solution to (x—x¢)"- f = 0 where f is a generalized function
on R, andn >0 s

n—1
fz) = erd® (@ — o)
k=0
for some coefficients cy,.
Example 4.3. 4 Solve (22 —4) - f(z) = 1:
17 1 1
71 = G579 = il — 733} Therefore,

(@ =94 - ) = He+2) - (@ -2) =1

Thus the equation to be solve can be written as (z% —4) - f(z) =1 = (22 — 4) -

1[5 — =] leading to the homogencous equation

42
(2 —4) - [f(2) = gp-1(z = 2) + gp-1(z +2)] =0
and this can be solve easily by

f(@)=1p-1(x—2) — 1p_1(x +2) + c16(x — 2) + c26(x + 2).

4.4 Derivative and simple differential equations

Rules of derivative: if fi, fa, f3, are generalized functions and if «,a/,a”, ..., and
B, B3, B",...CSG , and if a, 29 € R, ¢1,¢5 € C then:
e fi(@)+efa@)) = afi(@)+efi@), [fa—wo) = f/(e-ao), [f{a)] = af (az),
(@) F@) = alz) - (@) +a'(2) - flw), [(B* H@)]) = (B * @) = (B+ F)a).
Let H be the Heaviside function, prove that r(z) = x - H(xz) where r is the ram
function and use this to find r”.

1 : z>n

h(a:—:cl):{ 0 : z<m:,;
Find f’.

Assume that f has the jump J; = f(z{) — f(z,) at the point zx, k =1,2,--- ., m
the piecewise smooth function fo(z) = f(x) — > 7", Jeh(x — xi) is continuous. And
so f'(z) = fi(x) + > 0, Jed(z — xy) with f§ being represented by the fundamental
functional of the ordinary derivative.

Find f') f",...if f(z) = e "H(x).
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