Syllabus
MATH 670 / AMSC 670, Fall 2007
Ordinary Differential Equations

1. Introduction. Fundamental Notions, Results in Analysis:
 - Compact Sets, continuity, norms, convergence, uniform convergence
 - Arzela-Ascoli Theorem

2. Fundamental Theorems in ODE:
 - Existence, Uniqueness
 - Approximation, Extension, Continuity with respect to the initial conditions

3. Classical Themes:
 - Exact Solutions (Integrals)
 - Qualitative Description (Dynamical Systems): Phase Space
 - Differential Inequalities

4. Linear Differential Equations:
 - General Properties, Fundamental Matrix Solution
 - Higher Order LDE, Complex LDEs
 - Constant Coefficients: Matrix Exponential, Canonical Forms, Range of the Exponential Map

5. Qualitative Behavior of Solutions:
 - General Stability Theory: Definitions, Lyapunov’s Method, Invariance Principle
 - Stability for LDE with constant coefficients
 - Stability of General LDE (i.e. Time-Varying)
 - Linear Systems with Periodic Coefficients (Floquet Theory)
 - Theory of Cycles:
 - Poincare Return Map
 - Planar Dynamical Systems, Poincare-Bendixon Theorem
 - Recurrence

6. (if time) Local Phenomena:
 - Linearization
 - Invariant Manifolds (Local Theory)