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LINEAR INDEPENDENCE OF

COHERENT SYSTEMS ASSOCIATED TO LATTICES

ULRIK ENSTAD AND JORDY TIMO VAN VELTHOVEN

Abstract. This note considers the finite linear independence of coherent systems. We
show by simple arguments that lattice coherent systems of amenable groups are linearly
independent whenever the associated twisted group ring does not contain any nontrivial zero
divisors. We verify the latter for discrete locally indicable groups, which includes lattices in
nilpotent Lie groups. For the particular case of time-frequency translates of Euclidean space,
our main result recovers the Heil–Ramanathan–Topiwala (HRT) conjecture for subsets of
arbitrary lattices.

1. Introduction

Given a point (x, ξ) ∈ Rd × Rd = R2d, the associated time-frequency translation π(x, ξ) is
the unitary operator on L2(Rd) given by

π(x, ξ)g(t) = e2πiξ·tg(t− x), t ∈ Rd. (1.1)

The famous Heil–Ramanathan–Topiwala (HRT) conjecture [21, Conjecture] states that for
any nonzero g ∈ L2(Rd) and any finite subset Λ ⊆ R2d, the system

π(Λ)g = {π(λ)g : λ ∈ Λ} (1.2)

is linearly independent in L2(Rd). See the surveys [20,22] for an overview of the background,
motivation and many partial results on the conjecture obtained so far.

One of the most important partial results on the HRT conjecture is the following theorem
proved in [25].

Theorem 1.1. Let Λ ⊆ Γ be a finite subset of a discrete subgroup Γ ≤ R2d. For any nonzero
g ∈ L2(Rd), the system π(Λ)g is linearly independent.

The proof of Theorem 1.1 given in [25] uses group von Neumann algebras and analytic
versions of the zero divisor conjecture [24]. For dimension d = 1, alternative proofs of Theo-
rem 1.1 with more analytic arguments have been given in [1,4,9]. See also [29] for an approach
towards Theorem 1.1 through analysis on the Heisenberg group and representation theory.

The first aim of the present note is to show that the linear dependence of a system as in
Theorem 1.1 implies the existence of nontrivial zero divisors in a twisted group ring of Zn.
Since no such zero divisors exist (see Example 3.3), this provides a simple and self-contained
proof of Theorem 1.1. The relation (or lack thereof) between the HRT conjecture and the
zero divisor conjecture for the ordinary group ring of the Heisenberg group has been the topic
of the survey [22]. Our second aim is to obtain extensions of Theorem 1.1 that cover new
classes of groups and projective unitary representations. We expand on both aspects in the
next subsections.
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1.1. Proof strategy. The approach towards Theorem 1.1 used in this note is based on a
relation between linear independence of orbits of discrete subgroups (1.2) and the nonexistence
of zero divisors for twisted convolution. To be more explicit, let σ be the 2-cocycle coming
from the composition rule for time-frequency translates

π(z)π(z′) = σ(z, z′)π(z + z′), z, z′ ∈ R2d,

that is,

σ(z, z′) = e−2πix·ξ′ , z = (x, ξ), z′ = (x′, ξ′). (1.3)

For a discrete subgroup Γ ≤ R2d, the σ-twisted convolution of two finitely supported, complex-
valued sequences a, b on Γ is given by

(a ∗σ b)(γ′) =
∑

γ∈Γ

a(γ)b(γ′ − γ)σ(γ, γ′ − γ), γ′ ∈ Γ.

The set of finitely supported sequences on Γ equipped with σ-twisted convolution forms an
algebra C(Γ, σ), which is often called a twisted group ring of Γ. An element a ∈ C(Γ, σ) is
said to be a zero divisor if there exists nonzero b ∈ C(Γ, σ) such that a ∗σ b = 0.

Our proof method for Theorem 1.1 consists of showing that the lack of nontrivial zero di-
visors in the twisted group ring C(Γ, σ) implies the linear independence of the system π(Γ)g
for any nonzero g ∈ L2(Rd). Arguing by contraposition, we show that the existence of a
nonzero function with linearly dependent time-frequency translates would imply the exis-
tence of a nonzero function in L2(R2d) with a linearly dependent set of σ-twisted translates
(Lemma 2.1). This further implies the existence of a nonzero sequence in ℓ2(Γ) with linearly
dependent twisted translates (Lemma 2.2), which ultimately implies the existence of a non-
trivial zero divisor in C(Γ, σ) (Proposition 2.3). We provide a simple direct proof for the
nonexistence of zero divisors in C(Γ, σ) in Example 3.3.

For ordinary (nontwisted) convolution, several methods used in this note can already be
found in the literature as pointed out throughout the text. In particular, the relation between
linear independence of translates and zero divisors for convolution appears already in [26], and
the reduction from linear independence of (nontwisted) translates in ℓ2(Γ) to the existence of
nontrivial zero divisors in the (nontwisted) group ring CΓ is contained in [11]. These results
were used in [26, Proposition 6.3] to prove a special case of Theorem 1.1 for discrete subgroups
of R2d generated by finitely many points (a1, b1), . . . , (an, bn) ∈ R2d such that ak · bk′ ∈ Q for
1 ≤ k, k′ ≤ n. However, it appears that the general version of Theorem 1.1 for arbitrary
discrete subgroups cannot be deduced from [11,26].

Our main contribution is to show that by using twisted convolution (instead of ordinary
convolution) a streamlined proof of the general version of Theorem 1.1 can be obtained. It is
expected that the proof presented here is accessible to all interested readers.

1.2. Extensions. The overall proof approach outlined in Section 1.1 works naturally in the
general setting of amenable locally compact groups. This allows us to also obtain extensions
of Theorem 1.1 to more general groups and projective representations. Such extensions are
of interest in view of comments made on [21, p. 2790], where it is written that understanding
the linear independence problem more generally would be of great interest.

One natural setting to which Theorem 1.1 extends is the class of square-integrable pro-
jective representations of nilpotent Lie groups. The time-frequency translations given in
Equation (1.1) provide the easiest example of such a projective representation, and generally
any such representation π can be realized to act in a Hilbert space Hπ = L2(Rn) by means
of generalized modulations and translations, cf. [7]. This class of representations has recently
been used for various forms of generalized time-frequency analysis, see, e.g., [2, 12,14,16–18].

Our main result for nilpotent Lie groups is the following theorem:
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Theorem 1.2. Let G be a connected, simply connected, nilpotent Lie group and let π be an
irreducible, square-integrable, projective unitary representation on a Hilbert space Hπ. For
any finite subset Λ ⊆ Γ of a discrete subgroup Γ ≤ G and any nonzero g ∈ Hπ, the coherent
system

π(Λ)g = {π(λ)g : λ ∈ Λ}

is linearly independent.

The linear independence of subsystems of orbits of square-integrable representations of
locally compact groups has been studied earlier in [26]. However, the paper [26] treats only
genuine (nonprojective) representations that are square-integrable in the strict sense, which
do not exist for (simply connected) nilpotent Lie groups. To treat projective representations,
the use of twisted convolutions as explained in Section 1.1 appears to be essential.

It is a natural question to what generality the statements of Theorem 1.1 and Theorem 1.2
can be extended. Our most general statement, Theorem 4.1, from which Theorem 1.2 (and
Theorem 1.1) are obtained, states that for a σ-projective unitary representation (π,Hπ) with
admissible vectors, the coherent system π(Γ)g (Γ ⊆ G discrete subgroup and g ∈ Hπ nonzero)
is linearly independent whenever the twisted group ring C(Γ, σ) contains no nontrivial zero
divisors. Thus, the problem of linear independence is reduced to the algebraic problem of
zero divisors in twisted group rings. For the trivial 2-cocycle σ ≡ 1, the famous zero divisor
conjecture predicts that the ordinary (nontwisted) group ring CΓ contains no nontrivial zero
divisors whenever Γ is torsion-free. More generally, one can ask whether C(Γ, σ) contains no
nontrivial zero divisors for a torsion-free group Γ, where σ is an arbitrary 2-cocycle on Γ (see
Question 3.2). A positive answer to this question would imply, via Theorem 4.1, the linear
independence of π(Γ)g for all discrete subgroups Γ of torsion-free, amenable groups G.

Notation. The support of a sequence a : Γ → C is denoted by supp(a) = {γ ∈ Γ : a(γ) 6= 0}.
The space of all complex-valued sequences on Γ with finite support is denoted by CΓ. For
γ ∈ Γ, the sequence δγ : Γ → C is defined by δγ(γ) = 1 and δγ(γ

′) = 0 for γ 6= γ′.

2. Linear dependence of twisted left translations

The purpose of this section is to reduce the problem of linear dependence of an orbit of a
square-integrable projective representation into determining the linear dependence of twisted
translations of finite sequences on a discrete subgroup. The results in this section are inspired
by corresponding results in [11,26].

Throughout, let G be a second-countable locally compact group with identity element e. A
2-cocycle on G is a measurable function σ : G×G → T that satisfies the following properties:

σ(x, y)σ(xy, z) = σ(x, yz)σ(y, z), x, y, z ∈ G, (2.1)

σ(e, e) = 1. (2.2)

A σ-projective unitary representation (π,Hπ) of G on a Hilbert space Hπ is a measurable map
π : G → U(Hπ) satisfying

π(x)π(y) = σ(x, y)π(xy), for all x, y ∈ G,

for some function σ : G×G → C, which is necessarily a 2-cocycle.

The projective representation π will always be assumed to have an admissible vector, that
is, a vector h ∈ Hπ such that the coefficient transform Vh : Hπ → L∞(G) given by

Vhf(x) = 〈f, π(x)h〉, f ∈ Hπ,

defines an isometry into L2(G). If π is irreducible, i.e., if {0} and Hπ are the only closed
subspaces K of Hπ such that π(x)K ⊆ K for any x ∈ G, then any nonzero vector h ∈ Hπ
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satisfying Vhh ∈ L2(G) is (a multiple of) an admissible vector by the orthogonality relations
[5, 10,19]. See also [8, 13,28] for various classes of possibly reducible representations.

The significance of a σ-projective representation (π,Hπ) admitting an admissible vector is
that it is unitarily equivalent to a subrepresentation of the twisted left-regular representation
(λσ

G, L
2(G)), which is defined by the action

(λσ
G(x)F )(y) = σ(x, x−1y)F (x−1y), x, y ∈ G, (2.3)

for F ∈ L2(G). Indeed, if h ∈ Hπ is admissible, then Vh : Hπ → Vh(Hπ) ⊆ L2(G) unitarily
intertwines π and λσ

G, in the sense that

Vh(π(x)f)(y) = σ(x, x−1y)Vhf(x
−1y) = (λσ

G(x)Vhf)(y), x, y ∈ G, (2.4)

for any f ∈ Hπ.

2.1. Linear dependence of translates in L2(G). The covariance relation (2.4) immediately
yields the following result.

Lemma 2.1. Let Γ ⊆ G. If there exist a nonzero g ∈ Hπ such that π(Γ)g is linearly dependent,
then there exists a nonzero F ∈ L2(G) such that λσ

G(Γ)F is linearly dependent.

Proof. Let g ∈ Hπ be nonzero and suppose that there exist constants α1, α2, ..., αn ∈ C, not
all zero, and points γ1, γ2, ..., γn ∈ Γ such that

∑n
k=1 αkπ(γk)g = 0. Let h be an admissible

vector. Then F := Vhg is a nonzero element of L2(G), and hence, by Equation (2.4),

n
∑

k=1

αkλ
σ
G(γk)F = Vh

( n
∑

k=1

αkπ(γk)g

)

= 0,

as desired. �

2.2. Linear dependence of translates in ℓ2(Γ). The aim of this subsection is to reduce
the problem of linear dependence of twisted translates on L2(G) along a discrete subgroup
Γ to twisted translations on ℓ2(Γ). For this, we denote by λσ

Γ the σ-projective left regular
representation of Γ on ℓ2(Γ) (cf. Equation (2.3)), where the 2-cocycle σ on G is restricted to
Γ.

Lemma 2.2. Let Γ ≤ G be a discrete subgroup. If there exists a nonzero F ∈ L2(G) such
that λσ

G(Γ)F is linearly dependent, then there exists a nonzero c ∈ ℓ2(Γ) such that λσ
Γ(Γ)c is

linearly dependent.

Proof. By [27, Lemma 1.1] or [3, Proposition B.2.4] , there exists a fundamental domain for
Γ in G, that is, a Borel set Ω ⊆ G such that G is the disjoint union of the sets γΩ for γ ∈ Γ.
Consequently any F ∈ L2(G) can be represented by the norm convergent series

F =
∑

γ∈Γ

F · 1γΩ. (2.5)

Let HΩ denote the closed subspace of L2(G) consisting of functions whose essential support
is contained in Ω, and choose an orthonormal basis (ei)i∈N for HΩ. Then, for each γ ∈ Γ, the
set (λσ

G(γ)ei)i∈N is an orthonormal basis for λσ
G(γ)HΩ, which consists exactly of the functions

in L2(G) that are essentially supported on γΩ. Since γΩ and γ′Ω are disjoint for γ 6= γ′, it
follows that λσ

G(γ)HΩ and λσ
G(γ

′)HΩ have trivial intersection when γ 6= γ′. In combination
with Equation (2.5), this shows that (λσ

G(γ)ei)γ∈Γ,i∈N is an orthonormal basis for L2(G).

For fixed i ∈ N, define

Ki = span{λσ
G(γ)ei : γ ∈ Γ}.
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Then L2(G) =
⊕

i∈N Ki. Furthermore, each Ki is invariant under the operators λσ
G(γ) for

γ ∈ Γ, so the orthogonal projection Pi ∈ B(L2(G)) onto Ki commutes with these operators.
Let also Ti : ℓ

2(Γ) → Ki be the surjective linear isometry given by sending λσ
Γ(γ)δe to λσ

G(γ)ei
for γ ∈ Γ. Evidently, Tiλ

σ
Γ(γ) = λσ

G(γ)Ti for γ ∈ Γ and i ∈ N.

For proving the claim, suppose that F ∈ L2(G) is nonzero and that there exist scalars
α1, ..., αn ∈ C not all equal to zero and γ1, ..., γn ∈ Γ such that

∑n
k=1 αkλ

σ
G(γk)F = 0. Since

F 6= 0, there exists i′ ∈ N such that Pi′F 6= 0. Set c = T−1
i′ Pi′F . Then

n
∑

k=1

αkλ
σ
Γ(γk)b = T−1

i′ Pi′

( n
∑

k=1

αkλ
σ
G(γk)F

)

= 0,

as required. �

The above proof employs the standard technique of decomposing λσ
G|Γ into a countable

direct sum with λσ
Γ as summands. In [26, Proposition 5.1], the same technique was used for

ordinary (nonprojective) representations.

2.3. Linear dependence of translates in CΓ. The purpose of this section is to reduce the
linear dependence of twisted translates in ℓ2(Γ) even further to finitely supported sequences on
Γ (see Proposition 2.3). We start by recalling the notion of a Følner sequence in an amenable
group.

A countable discrete group Γ is called amenable if it admits a (right) Følner sequence, that
is, a sequence (Fn)n∈N of finite subsets Fn ⊆ Γ such that

lim
n→∞

|Fn△Fnγ|

|Fn|
= 0 for all γ ∈ Γ, (2.6)

where A△B denotes the symmetric difference of two sets A and B. In particular, all abelian
and nilpotent groups are amenable. An explicit Følner sequence in Γ = Zd is given by the
sets Fn = {−n,−n+ 1, . . . , 0, . . . , n} for n ∈ N.

The following result shows that the existence of a nonzero linearly independent orbit in
ℓ2(Γ) implies the existence of such an orbit in CΓ.

Proposition 2.3. Suppose Γ is an amenable group. If there exists nonzero c ∈ ℓ2(Γ) whose
orbit λσ

Γ(Γ)c is linearly dependent, then there also exists nonzero c′ ∈ CΓ such that λσ
Γ(Γ)c

′ is
linearly dependent.

Proof. Since λσ
Γ(Γ)c is assumed to be linearly dependent, there exists nonzero a ∈ CΓ such

that
∑

γ∈Γ a(γ)λ
σ
Γ(γ)c = 0. Throughout the proof, we fix such a sequence a and define the

operator Ca : ℓ2(Γ) → ℓ2(Γ) by

Cab =
∑

γ∈Γ

a(γ)λσ
Γ(γ)b.

Then for showing the claim it suffices to prove there exists nonzero c′ ∈ CΓ such that Cac
′ = 0.

We will use the σ-twisted right regular representation (ρσΓ, ℓ
2(Γ)) of Γ, given by

(ρσΓ(γ)c)(γ
′) = σ(γ′, γ)c(γ′γ), c ∈ ℓ2(Γ), γ, γ′ ∈ Γ.

A basic fact is that ρσΓ commutes with λσ
Γ, that is, λ

σ
Γ(γ)ρ

σ
Γ(γ

′) = ρσΓ(γ
′)λσ

Γ(γ) for all γ, γ
′ ∈ Γ.

Consequently, Ca commutes with ρσΓ, so that the kernel N (Ca) of Ca is invariant under ρσΓ.

Set K := supp(a) and let (Fn)n∈N be a Følner sequence in Γ. For fixed n ∈ N, set
intK(Fn) := {γ ∈ Fn : Kγ ⊆ Fn}, and define the subspaces

Vn = {c ∈ ℓ2(Γ) : supp(c) ⊆ Fn} and V ′
n = {c ∈ ℓ2(Γ) : supp(c) ⊆ intK(Fn)}.
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Note that supp(Cac) ⊆ supp(a) supp(c) for all c ∈ ℓ2(Γ). Since K intK(Fn) ⊆ Fn, this implies
that Ca(V

′
n) ⊆ Vn. Hence we consider the restriction of Ca to V ′

n as a map Cn
a := Ca|V ′

n
:

V ′
n → Vn. Let N (Cn

a ) ⊆ V ′
n denote the kernel of Cn

a .

The proof will be split into two steps.

Step 1. In this step, it will be shown that the orthogonal projections PN (Ca) and PN (Cn
a )

onto N (Ca) and N (Cn
a ), respectively, satisfy the identity

‖PN (Ca)δe‖
2 = lim

n→∞

1

|Fn|

∑

γ∈Fn

‖PN (Cn
a )δγ‖

2. (2.7)

For this, note that, given n ∈ N, the kernel N (Cn
a ) ⊆ Vn ∩N (Ca) ⊆ N (Ca), so ‖PN (Cn

a )δγ‖ ≤
‖PN (Ca)δγ‖ for all γ ∈ Γ. In addition, since N (Ca) is invariant under ρ

σ
Γ, it follows that

‖PN (Ca)δγ‖ = ‖PN (Ca)ρ
σ
Γ(γ

−1)δe‖ = ‖ρσΓ(γ
−1)PN (Ca)δe‖ = ‖PN (Ca)δe‖, γ ∈ Γ.

Combining both observations yields

1

|Fn|

∑

γ∈Fn

‖PN (Cn
a )δγ‖

2 ≤
1

|Fn|

∑

γ∈Fn

‖PN (Ca)δγ‖
2 = ‖PN (Ca)δe‖

2, (2.8)

Similarly, since the range R(Cn
a ) ⊆ R(Ca) and R(Ca) is ρ

σ
Γ-invariant, it follows that

1

|Fn|

∑

γ∈Fn

‖PR(Cn
a )δγ‖

2 ≤ ‖PR(Ca)δe‖
2. (2.9)

Since both N (Cn
a ) andR(Cn

a ) are contained in Vn, it follows that ‖PN (Cn
a )δγ‖ = ‖PR(Cn

a )δγ‖ =
0 whenever γ /∈ Fn. Hence

1

|Fn|

∑

γ∈Fn

‖PN (Cn
a )δγ‖

2 +
1

|Fn|

∑

γ∈Fn

‖PR(Cn
a )δγ‖

2 =
tr(PN (Cn

a )) + tr(PR(Cn
a ))

|Fn|

=
dim(N (Cn

a )) + dim(R(Cn
a ))

|Fn|

=
|dim(V ′

n)|

|Fn|

=
| intK(Fn)|

|Fn|
. (2.10)

We claim that

lim
n→∞

| intK(Fn)|

|Fn|
= 1. (2.11)

To see this, note that intK(Fn) =
⋂

k∈K∪{e} Fnk
−1, so that

Fn \ intK(Fn) =
⋃

k∈K∪{e}

Fn ∩ F c
nk

−1 ⊆
⋃

k∈K∪{e}

Fn△Fnk
−1.

Hence, as n → ∞,

∣

∣

∣
1−

| intK(Fn)|

|Fn|

∣

∣

∣
=

|Fn \ intK(Fn)|

|Fn|
≤

∑

k∈K∪{e}

|Fn△Fnk
−1|

|Fn|
→ 0,

which proves the claim (2.11).
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Combining Equation (2.10) and Equation (2.11) gives

lim
n→∞

1

|Fn|

∑

γ∈Fn

‖PN (Cn
a )δγ‖

2 +
1

|Fn|

∑

γ∈Fn

‖PR(Cn
a )δγ‖

2 = 1.

On the other hand, ‖PN (Ca)δe‖
2 + ‖PR(Ca)δe‖

2 = ‖δe‖
2 = 1. Thus,

lim
n→∞

1

|Fn|

∑

γ∈Fn

‖PN (Cn
a )δγ‖

2 +
1

|Fn|

∑

γ∈Fn

‖PR(Cn
a )δγ‖

2 = ‖PN (Ca)δe‖
2 + ‖PR(Ca)δe‖

2.

Using Equation (2.8) and Equation (2.9), the claim (2.7) follows.

Step 2. Note that the linear span of the elements {ρσΓ(γ)δe : γ ∈ Γ} is dense in ℓ2(Γ).
Therefore, since Ca is nonzero, linear, and commutes with ρσΓ, we must have Caδe 6= 0. By
Equation (2.7), there exists n′ ∈ N such that |Fn′ |−1

∑

γ∈Fn′
‖PN (Cn′

a )δγ‖
2 > 0, which implies

that N (Cn′

a ) 6= {0}. Thus, there exists nonzero c′ ∈ Vn′ ∩ N (Ca) which satisfies c′ ∈ CΓ and
Cac

′ = 0. �

The above argument is the same one as given in [11, Theorem], but extended to twisted
left regular representations of Γ.

3. Zero divisors in twisted group rings

This section is devoted to the study of zero divisors for twisted convolution. In particular,
it will be shown that such nontrivial zero divisors do not exist for twisted convolutions on
Zd, and more generally the class of locally indicable groups. In combination with the results
obtained in Section 2, this will allow us to provide the proofs of the main theorems in Section 4.

Throughout this section, Γ will denote a countable discrete group with identity element e
and σ will denote a 2-cocycle on Γ (cf. Equation (2.1)). The σ-twisted convolution of two
sequences a, b ∈ CΓ is the sequence a ∗σ b in CΓ defined by

(a ∗σ b)(γ′) =
∑

γ∈Γ

σ(γ, γ−1γ′)a(γ)b(γ−1γ′), γ′ ∈ Γ.

Equipped with twisted convolution ∗σ, the vector space CΓ is a complex algebra which will
be denoted by C(Γ, σ) to emphasize the dependence on σ. The algebra C(Γ, σ) is called a
twisted group ring or twisted group algebra of Γ. As a vector space, C(Γ, σ) is spanned by the
elements {δγ : γ ∈ Γ}, which are easily seen to satisfy the convolution relation

δγ ∗σ δγ′ = σ(γ, γ′)δγγ′ , γ, γ′ ∈ Γ. (3.1)

For n ∈ N and a ∈ CΓ, the n-fold twisted convolution product of a is denoted by a∗σ(n).

3.1. Zero divisors. An element a ∈ C(Γ, σ) is called a zero divisor if there exists a nonzero
b ∈ C(Γ, σ) such that a ∗σ b = 0. The zero sequence is always a zero divisor, the so-called
trivial zero divisor. We will be concerned with when C(Γ, σ) has no zero divisors apart from
the trivial one.

First, recall that Γ is called torsion-free if whenever γn = e for some γ ∈ Γ and positive
integer n, then γ = e. The following extends a well-known observation for usual (nontwisted)
group rings.

Lemma 3.1. If the twisted group ring C(Γ, σ) has no nontrivial zero divisors, then Γ must
be torsion-free.
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Proof. We give a proof by contraposition. Let γ ∈ Γ be nontrivial and let n ∈ N be the least
natural number such that γn = e. Note that by iterating (3.1), it follows that

δ∗σ(n)γ = σ(γ, γ)σ(γ, γ2) · · · σ(γ, γn−1)δe,

where δ
∗σ(n)
γ denotes the n-fold twisted convolution product of δγ . Set

α := σ(γ, γ)σ(γ, γ2) · · · σ(γ, γn−1) and a := α−1/nδγ .

Then a∗σ(n) = δe, and by expanding brackets one sees that

(δe + a+ a∗σ(2) + · · ·+ a∗σ(n−1)) ∗σ (a− δe) = a∗σ(n) − δe = 0.

Note that for each 1 ≤ k ≤ n− 1, the support of the power a∗σ(k) equals {γk}, and since each

of these elements are distinct this implies that δe+ a+ a∗σ(2)+ · · ·+ a∗σ(n−1) is nonzero. This
shows that a− δe is a nontrivial zero divisor in C(Γ, σ). �

For ordinary (nontwisted) group rings, the converse to Lemma 3.1 is the well-known zero
divisor conjecture, and is currently an open problem. More generally one can ask the following
question.

Question 3.2. Let Γ be a torsion-free group and let σ be a 2-cocycle on Γ. Does the twisted
group ring C(Γ, σ) contain no nontrivial zero divisors?

The following example answers Question 3.2 affirmatively for Γ = Zd, d ∈ N.

Example 3.3. Let Γ = Zd and let σ be any 2-cocycle on Zd. We give a direct proof that the
twisted group ring C(Zd, σ) does not contain any nontrivial zero divisors. Let ei denote the
ith basis vector of Zd, 1 ≤ i ≤ d, and set ui = δei . Note that elements a ∈ C(Zd, σ) can be
written as multivariate polynomials

a =
∑

i1,...,id∈Z

ai1,...,idu
∗σ(i1)
1 · · · u

∗σ(id)
d

where the coefficients ai1,...,id ∈ C are zero for all but finitely many indices. The multiplication
is not commutative like in an ordinary polynomial ring, but instead governed by the basic
noncommutative relations uiuj = zi,jujui where zi,j = σ(ei, ej)σ(ej , ei).

Let us call a non-negative if ai1,...,id = 0 whenever ik < 0 for some 1 ≤ k ≤ d. We define
the degree of a non-negative, nonzero element a to be the maximum of the numbers i1+ · · · id
where ai1,...,id 6= 0, and set deg(0) = −1. One can then verify as with usual polynomial

multiplication that deg(a ∗σ b) = deg(a) + deg(b) for non-negative elements a, b ∈ C(Zd, σ).

Letting now a, b ∈ C(Zd, σ) be nonzero, so that deg(a) ≥ 0 and deg(b) ≥ 0, we wish to
prove that a ∗σ b 6= 0. Note that by multiplying with a high enough power of u1 · · · ud we
may assume that a and b are non-negative. But then deg(a ∗σ b) = deg(a)+deg(b) ≥ 0 which
implies that a ∗σ b 6= 0.

3.2. Locally indicable groups. Our next result (Proposition 3.4) shows that Question 3.2
is affirmative for locally indicable groups. This extends a classical result [23] to the twisted
setting. We start by introducing the relevant notions and terminology. Readers only interested
in the case Γ = Zd and Theorem 1.1 may skip this subsection.

A degree map on Γ is a surjective group homomorphism φ : Γ → Z. Given γ ∈ Γ, we refer
to φ(γ) as the degree of γ (relative to φ). An element a ∈ C(Γ, σ) is called homogeneous
of degree k if φ(γ) = k for all γ ∈ supp(a). Note that if a is homogeneous of degree k
and b is homogeneous of degree l, then a ∗σ b is homogeneous of degree k + l: Indeed, if
γ ∈ supp(a ∗σ b) then γ = γ1γ2 for some γ1 ∈ supp(a) and γ2 ∈ supp(b), which means that
φ(γ) = φ(γ1)+φ(γ2) = k+l. Every element of C(Γ, σ) can be written as a sum of homogeneous
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elements. If a is a sum of homogeneous elements a1, . . . , am of degrees k1, . . . , km and b is
a sum of homogeneous elements b1, . . . , bn of degrees l1, . . . , ln, then a ∗σ b is the sum of the
homogeneous elements ai ∗σ bj of degrees ki + lj , 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The group Γ is said to be locally indicable if every nontrivial, finitely generated subgroup
of Γ admits a degree map.

Proposition 3.4. If Γ is locally indicable, then C(Γ, σ) contains no nontrivial zero divisors.

Proof. We will prove the following statement by induction on n: For every nonzero a, b ∈
C(Γ, σ) with | supp(a)|+ | supp(b)| = n, the twisted convolution a∗σ b is nonzero. For the base
case n = 2 we have that | supp(a)| = | supp(b)| = 1, say supp(a) = {γ1} and supp(b) = {γ2},
so that a∗σ b = a(γ1)b(γ2)σ(γ1, γ2)δγ1γ2 . Then (a∗σ b)(γ1γ2) = a(γ1)b(γ2)σ(γ1, γ2) 6= 0, which
means that γ1γ2 ∈ supp(a ∗σ b). Hence, the base case is proved.

For the induction step, let n ∈ N, n ≥ 3, and assume that the statement holds for all k < n.
Let a, b ∈ C(Γ, σ) be nonzero with | supp(a)| + | supp(b)| = n. For any γ1 ∈ supp(a) and
γ2 ∈ supp(b), consider a′ = δγ1−1 ∗σ a and b′ = b ∗σ δγ2−1 . Note that a ∗σ b = 0 if and only
if a′ ∗σ b′ = 0 and that e ∈ supp(a′) ∩ supp(b′). Hence, by replacing a with a′ and b with b′

respectively, it may be assumed that e is contained in the support of both a and b.

Let Γ0 be the subgroup of Γ generated by supp(a) ∪ supp(b). Since n ≥ 3, Γ0 is nontrivial,
so there exists a degree map φ : Γ0 → Z. We claim that a and b cannot both be homogeneous
(relative to φ). Indeed, if both a and b where homogeneous, then they would be homogeneous
of degree 0 since e ∈ supp(a) ∩ supp(b), which would imply that φ(γ) = 0 for all γ ∈
supp(a) ∪ supp(b) , hence φ ≡ 0. This contradicts the surjectivity of φ.

Let k = min{φ(γ) : γ ∈ supp(a)} and l = min{φ(γ) : γ ∈ supp(b)}. Let

a′ =
∑

γ∈φ−1(k)

a(γ)δγ and b′ =
∑

γ∈φ−1(l)

b(γ)δγ .

In other words, a′ is the homogeneous element of least degree in the expansion of a into
homogeneous elements, and analogously for b′ with respect to b. By the previous paragraph
either supp(a′) ( supp(a) or supp(b′) ( supp(b). In either case | supp(a′)| + | supp(b′)| < n,
so by the induction hypothesis a′ ∗σ b′ 6= 0. Expanding a ∗σ b into a sum of homogeneous
elements, we obtain

a ∗σ b = a′ ∗σ b′ +R,

where a′ ∗σ b′ is homogeneous of degree k + l and R is a sum of homogeneous elements of
degrees strictly bigger than k + l. Consequently, the supports of a′ ∗σ b′ and R are disjoint,
so a′ ∗σ b′ 6= 0 implies that a ∗σ b 6= 0. This finishes the proof. �

The proof of Proposition 3.4 follows the proof for ordinary (nontwisted) group rings in [23].

Lastly, we provide a simple argument showing that nilpotent groups are locally indicable.
Recall that Γ is nilpotent if the upper central series defined recursively by Z0 := {e} and

Zn+1 := {γ ∈ Γ : [γ, γ′] ∈ Zn for all γ′ ∈ Γ}, n ∈ N,

terminates after a finite number of steps, that is, Zn = Γ for some n ∈ N. The smallest such
n is called the nilpotency class of Γ. Note that Z1 = Z(Γ), the center of Γ.

Lemma 3.5. Every torsion-free nilpotent group Γ is locally indicable.

Proof. We prove the lemma by induction on the nilpotency class of Γ. If Γ has nilpotency
class 1, then it is abelian and torsion-free, hence every finitely generated subgroup of Γ is free
abelian by the classification of finitely generated abelian groups. For a free abelian group, the
projection onto the subgroup generated by any one of its generators is a degree map. This
shows that Γ is locally indicable when it has nilpotency class 1.
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Next, suppose the result holds for all nilpotent, torsion-free groups of class strictly smaller
than n and let Γ be torsion-free and nilpotent of class n. Firstly, note that the center Z(Γ)
of Γ is abelian and torsion-free, hence locally indicable by the base case of the induction.
Secondly, the quotient Γ/Z(Γ) is nilpotent of class strictly smaller than n, and also necessarily
torsion-free (see, e.g., [6, Corollary 2.22]). Thus Γ/Z(Γ) is locally indicable by the induction
hypothesis. Now that both Z(Γ) and Γ/Z(Γ) are locally indicable, it follows from [23, p. 246,
Lemma] that Γ is locally indicable. This finishes the proof. �

4. Proof of main theorems

The following general theorem shows that the problem of linearly independent orbits of
square-integrable representations over discrete subgroups can be reduced to the existence of
zero divisors in twisted group rings.

Theorem 4.1. Let G be a second-countable, locally compact group and let (π,Hπ) be a σ-
projective unitary representation of G admitting admissible vectors. If Γ is a discrete amenable
subgroup of G such that the twisted group ring C(Γ, σ) contains no nontrivial zero divisors,
then the coherent system

π(Γ)g = {π(γ)g : γ ∈ Γ}

is linearly independent for any nonzero vector g ∈ Hπ.

Proof. Arguing by contraposition, suppose that the coherent system π(Γ)g is linearly depen-
dent. By Lemma 2.1, this implies that there exists nonzero F ∈ L2(G) such that λσ

G(Γ)F is
linearly dependent in L2(G). By Lemma 2.2 this implies again that there exists a nonzero
c ∈ ℓ2(Γ) such that λσ

Γ(Γ)c is linearly dependent in ℓ2(Γ). Finally, since Γ is assumed amenable,
we can apply Proposition 2.3 to conclude that C(Γ, σ) contains a nontrivial zero divisor. �

Theorem 1.1 and Theorem 1.2 are now a simple consequence of Theorem 4.1:

Proof of Theorem 1.1. Let Γ be a discrete subgroup of R2d. By the orthogonality relations of
the short-time Fourier transform [15, Chapter 3], any unit vector g ∈ L2(Rd) is admissible.
Hence, by Theorem 4.1, it suffices to show that C(Γ, σ), where σ denotes the 2-cocycle from
Equation (1.3), contains no nontrivial zero divisors. However, a discrete subgroup of R2d is
isomorphic to Zk for for some 0 ≤ k ≤ 2d, hence the twisted group ring C(Γ, σ) is isomorphic
to C(Zk, σ′) for a 2-cocycle σ′ on Zk. The nonexistence of nontrivial zero divisors in the latter
was established in Example 3.3. �

Proof of Theorem 1.2. Since G is a unimodular group, it follows by the orthogonality relations
[5,10] that any nonzero vector g ∈ Hπ is (a multiple of) an admissible vector. A discrete sub-
group Γ of a connected, simply connected nilpotent Lie group G is torsion-free and nilpotent,
cf. [30, Chapter 2]. Thus, Γ is locally indicable by Lemma 3.5. The claim follows therefore
directly from Theorem 4.1. �
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