ZERO SET OF ZAK TRANSFORM AND THE HRT CONJECTURE

VIGNON OUSSA

Abstract

The HRT (Heil-Ramanathan-Topiwala) posits the linear independence of any set of nonzero square-integrable vectors obtained from a single nonzero vector f by applying a finite set of time-frequency shift operators. In this short note, we present findings centered on the zero set of the Zak transform of f, and a distinct arrangement involving a finite set of N points on an integer lattice in the time-frequency plane, excluding a specific point.

1. Introduction

The HRT Conjecture [3] posits that a finite system of time-frequency shifted copies of a nonzero square-integrable function will always be linearly independent. For an updated overview of this conjecture, please refer to our latest work [5].

Following up on [5], the primary objective of this short note is to present a number of new results for this conjecture. Let's consider a function f that is nonzero in $L^{2}\left(\mathbb{R}^{n}\right)$. Choose an arbitrary natural number N. Following this, we construct a finite system of vectors, which we will denote as $\mathcal{F}_{(N, 1)}$ in the following manner
$\left\{t \mapsto e^{-2 \pi i\left\langle y^{(j)}, t\right\rangle} f\left(t-x^{(j)}\right):\left(x^{(1)}, y^{(1)}\right), \cdots,\left(x^{(N)}, y^{(N)}\right) \in \mathbb{Z}^{2 n}\right\} \cup\left\{t \mapsto e^{-2 \pi i\langle y, t\rangle} f(t-x)\right\}$.
This system includes functions of the form

$$
t \mapsto e^{-2 \pi i\left\langle y^{(j)}, t\right\rangle} f\left(t-x^{(j)}\right) \in L^{2}\left(\mathbb{R}^{n}\right)
$$

where each $\left(x^{(1)}, y^{(1)}\right), \cdots,\left(x^{(N)}, y^{(N)}\right)$ belongs to the integer full-rank lattice $\mathbb{Z}^{2 n}$. Furthermore, it includes a time-frequency-shifted vector of the form $t \mapsto e^{-2 \pi i\langle y, t\rangle} f(t-x) \in L^{2}\left(\mathbb{R}^{n}\right)$ where (x, y) can be identified with a point on the time-frequency plane. We establish the following as valid:

Proposition 1. Suppose that the Zak transform of f is continuous. Then the system of vectors $\mathcal{F}_{(N, 1)}$ is linearly independent under the condition that the group which is generated by $(-x, y)$ modulo $\mathbb{Z}^{2 n}$ is a dense subset of the $2 n$-dimensional torus $[0,1)^{n} \times[0,1)^{n}$.

The subsequent finding indicates that for functions that decay at a sufficiently rapid rate, the zero set of their Zak transform remains unchanged under a specific symmetry.

Proposition 2. If $\mathcal{F}_{(N, 1)}$ is linearly dependent then the zero set of the Zak transform of f is invariant under the action

$$
[0,1)^{n} \times[0,1)^{n} \ni z \mapsto z+(-x, y) \text { modulo } \mathbb{Z}^{2 n} \in[0,1)^{n} \times[0,1)^{n} .
$$

Date: May 23, 2023.
2000 Mathematics Subject Classification. Primary 42C15 Secondary 42C40.
Key words and phrases. HRT conjecture, Ergodic maps, Zak transform.

Proposition 3. Suppose that the Zak transform of f is continuous and has a finite number of zeros in the unit square $[0,1)^{n} \times[0,1)^{n}$. The system of vectors $\mathcal{F}_{(N, 1)}$ is linearly independent under the condition that the group which is generated by $(-x, y)$ modulo $\mathbb{Z}^{2 n}$ forms a countably infinite subset (not necessarily dense) of the $2 n$-dimensional torus $[0,1)^{n} \times[0,1)^{n}$.

As a straightforward application of Proposition 3, we settle the HRT Conjecture with respect to the configuration at hand for a certain class of totally positive functions.

Corollary 4. Let f be a totally positive nonzero function without Gaussian factor in its Fourier transform. Then the system of vectors

$$
\mathcal{F}=\left\{t \mapsto e^{-2 \pi i y^{(j)} t} f\left(t-x^{(j)}\right): x^{(1)}, y^{(1)}, \cdots, x^{(N)}, y^{(N)} \in \mathbb{Z}\right\} \cup\left\{t \mapsto e^{-2 \pi i y t} f(t-x)\right\}
$$

is linearly independent.
Proof. Let's consider a function, f, which is totally positive and does not have a Gaussian factor in its Fourier transform. According to [4], the Zak transform of f is continuous and admits only one zero on its fundamental domain of quasi-periodicity. If $\operatorname{dim}_{\mathbb{Q}}(\mathbb{Q}+\mathbb{Q} x+\mathbb{Q} y)=1$ then we are in the case of rational time-frequency shifts, and in this case, the HRT Conjecture is known to always be true. Suppose next that $\operatorname{dim}_{\mathbb{Q}}(\mathbb{Q}+\mathbb{Q} x+\mathbb{Q} y)>1$. Then the group generated by $(-x, y)$ modulo \mathbb{Z}^{2} is infinite and the stated corollary is immediate.

2. Proof of Propositions 1, 2, and 3

Let \mathfrak{h}_{n} be the $(2 n+1)$-dimensional Heisenberg algebra. For a concrete realization [1], one may choose an algebra constructed on the basis set $\left\{X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{n}, Z\right\}$. This algebra can be expressed as follows: $\sum_{k=1}^{n} x_{k} X_{k}+\sum_{k=1}^{n} y_{k} Y_{k}+z Z$ where

$$
\sum_{k=1}^{n} x_{k} X_{k}+\sum_{k=1}^{n} y_{k} Y_{k}+z Z=\left[\begin{array}{ccccc}
0 & x_{1} & \cdots & x_{n} & z \\
& & & & y_{1} \\
& & \ddots & & \vdots \\
& & & & y_{n} \\
0 & & & & 0
\end{array}\right] .
$$

Its associated Lie group denoted as H_{n} is given by:

$$
H_{n}=\left\{\exp (z Z) \exp \left(\sum_{k=1}^{n} y_{k} Y_{k}\right) \exp \left(\sum_{k=1}^{n} x_{k} X_{k}\right)=\left[\begin{array}{ccccc}
1 & x_{1} & \cdots & x_{n} & z \\
& & & & y_{1} \\
& & \ddots & & \vdots \\
& & & & y_{n} \\
0 & & & & 1
\end{array}\right]: x_{j}, y_{k}, z \in \mathbb{R}\right\}
$$

It is a well-established fact that H_{n} acts unitarily and irreducibly on $L^{2}\left(\mathbb{R}^{n}\right)$ via π as follows: Given points $y=\left(y_{1}, \cdots, y_{n}\right), x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ and a vector $f \in L^{2}\left(\mathbb{R}^{n}\right)$, one has: (a) multiplication by characters

$$
[\pi \exp (z Z) f]\left(\exp \left(\sum_{k=1}^{n} t_{k} X_{k}\right)\right)=e^{2 \pi i z} f\left(\exp \left(\sum_{k=1}^{n} t_{k} X_{k}\right)\right)
$$

(b) a modulation action of the form

$$
\left[\pi\left(\exp \left(\sum_{k=1}^{n} y_{k} Y_{k}\right)\right) f\right]\left(\exp \left(\sum_{k=1}^{n} t_{k} X_{k}\right)\right)=e^{-2 \pi i\langle y, t\rangle} f\left(\exp \left(\sum_{k=1}^{n} t_{k} X_{k}\right)\right)
$$

and (c) a translation action defined as

$$
\left[\pi\left(\exp \left(\sum_{k=1}^{n} x_{k} X_{k}\right)\right) f\right](t)=f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}-x_{k}\right) X_{k}\right)\right) .
$$

Suppose that there exists a nonzero vector $f \in L^{2}\left(\mathbb{R}^{n}\right)$ such that
$\left\{\pi\left(\exp \left(\sum_{k=1}^{n} \ell_{k}^{(j)} Y_{k}\right) \exp \left(\sum_{k=1}^{n} m_{k}^{(j)} X_{k}\right)\right) f: 1 \leq j \leq N\right\} \cup\left\{\pi\left(\exp \left(\sum_{k=1}^{n} y_{k} Y_{k}\right) \exp \left(\sum_{k=1}^{n} x_{k} X_{k}\right)\right) f\right\}$
is linearly dependent for some finite points lattice points of the form

$$
\begin{aligned}
& \sum_{k=1}^{n} \ell_{k}^{(j)} Y_{k} \in \sum_{k=1}^{n} \mathbb{Z} Y_{k}, \\
& \sum_{k=1}^{n} m_{k}^{(j)} X_{k} \in \sum_{k=1}^{n} \mathbb{Z} X_{k}, 1 \leq j \leq N
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=1}^{n} y_{k} Y_{k} \in \sum_{k=1}^{n} \mathbb{R} Y_{k}, \\
\sum_{k=1}^{n} x_{k} X_{k} \in \sum_{k=1}^{n} \mathbb{R} X_{k}
\end{aligned}
$$

In other words, there exist nonzero complex numbers c_{1}, \cdots, c_{N} such that

$$
\sum_{j=1}^{N} c_{j} \pi\left(\exp \left(\sum_{k=1}^{n} \ell_{k}^{(j)} Y_{k}\right) \exp \left(\sum_{k=1}^{n} m_{k}^{(j)} X_{k}\right)\right) f=\pi\left(\exp \left(\sum_{k=1}^{n} y_{k} Y_{k}\right) \exp \left(\sum_{k=1}^{n} x_{k} X_{k}\right)\right) f
$$

Next, let $Z: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left([0,1)^{n} \times[0,1)^{n}\right)$ be the Zak transform [2], formally defined as follows:

$$
Z f(t, \omega)=\sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}+\tau_{k}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega, \tau\rangle}
$$

where $\tau=\left(\tau_{1}, \cdots, \tau_{n}\right)$. Then it is known that the Zak transform is a unitary operator whose range consists of quasi-periodic functions (see [2], Section 8.1 on Page 147 and Theorem 8.2.5 on Page 154.)

Furthermore, it is perhaps worth noting the following properties of the Zak transform:

- If f is integrable then $Z f \in L^{1}\left([0,1)^{n} \times[0,1)^{n}\right)$
- If f is continuous and additionally,

$$
\sum_{\ell \in \mathbb{Z}^{n}} \operatorname{esssup}_{t \in[0,1)^{n}}|f(t+\ell)|<\infty
$$

then $Z f$ is continuous.

- The Zak transform maps Schwartz functions to smooth function on $[0,1)^{n} \times[0,1)^{n}$. Also, if F is quasiperiodic on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ then $F=Z f$ for some unique Schwartz function f.

Applying the Zak transform to each side of the following equation:

$$
\sum_{j=1}^{N} c_{j} \pi\left(\exp \left(\sum_{k=1}^{n} \ell_{k}^{(j)} Y_{k}\right) \exp \left(\sum_{k=1}^{n} m_{k}^{(j)} X_{k}\right)\right) f=\pi\left(\exp \left(\sum_{k=1}^{n} y_{k} Y_{k}\right) \exp \left(\sum_{k=1}^{n} x_{k} X_{k}\right)\right) f
$$

we obtain:

$$
\begin{aligned}
& \sum_{j=1}^{N} c_{j} \sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} e^{-2 \pi i\left\langle t+\tau, \ell^{(j)}\right\rangle} f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}+\tau_{k}-m_{k}^{(j)}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega, \tau\rangle} \\
& =\sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} e^{-2 \pi i\langle t+\tau, y\rangle} f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}+\tau_{k}-x_{k}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega, \tau\rangle} .
\end{aligned}
$$

On the one hand,

$$
\left.\begin{array}{c}
\left.\sum_{j=1}^{N} c_{j} \sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} e^{-2 \pi i\left\langle t+\tau, \ell^{(j)}\right.}\right\rangle_{f}\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}+\tau_{k}-m_{k}^{(j)}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega, \tau\rangle} \\
= \\
\sum_{j=1}^{N} c_{j} e^{-2 \pi i\left\langle t, \ell^{(j)}\right\rangle} \sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} e^{-2 \pi i\left\langle\tau, \ell^{(j)}\right\rangle} f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}+\tau_{k}-m_{k}^{(j)}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega, \tau\rangle} \\
\left(e^{-2 \pi i\left\langle\tau, \ell^{(j)}\right\rangle}=1\right) \\
=
\end{array} \sum_{j=1}^{N} c_{j} e^{-2 \pi i\left\langle t, \ell^{(j)}\right.}\right\rangle \sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}+\tau_{k}-m_{k}^{(j)}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega, \tau\rangle} .
$$

Moreover, the change of variable $\tau_{k} \mapsto \tau+m_{k}^{(j)}$ yields

$$
\begin{aligned}
& \left.\sum_{j=1}^{N} c_{j} \sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} e^{-2 \pi i\left\langle t+\tau, \ell^{(j)}\right.}\right\rangle_{f}\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}+\tau_{k}-m_{k}^{(j)}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega, \tau\rangle} \\
& =\sum_{j=1}^{N} c_{j} e^{-2 \pi i\left\langle t, \ell^{(j)}\right\rangle} \sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}+\tau_{k}\right) X_{k}\right)\right) e^{-2 \pi i\left\langle\omega, \tau+m^{(j)}\right\rangle} \\
& =\sum_{j=1}^{N} c_{j} e^{-2 \pi i\left\langle t, \ell^{(j)}\right\rangle} e^{-2 \pi i\left\langle\omega, m^{(j)}\right\rangle} \sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}+\tau_{k}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega, \tau\rangle} \\
& =\left(\sum_{j=1}^{N} c_{j} e^{-2 \pi i\left\langle t, \ell^{(j)}\right\rangle} e^{-2 \pi i\left\langle\omega, m^{(j)}\right\rangle}\right) \cdot Z f(t, \omega) .
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} e^{-2 \pi i\langle t+\tau, y\rangle} f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}-x_{k}+\tau_{k}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega, \tau\rangle} \\
& =e^{-2 \pi i\langle t, y\rangle} \sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} e^{-2 \pi i\langle\tau, y\rangle} f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}-x_{k}+\tau_{k}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega, \tau\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-2 \pi i\langle t, y\rangle} \sum_{\tau_{1} \in \mathbb{Z}} \cdots \sum_{\tau_{n} \in \mathbb{Z}} f\left(\exp \left(\sum_{k=1}^{n}\left(t_{k}-x_{k}+\tau_{k}\right) X_{k}\right)\right) e^{-2 \pi i\langle\omega+y, \tau\rangle} \\
& =e^{-2 \pi i\langle t, y\rangle} Z f(t-x, \omega+y)
\end{aligned}
$$

In summary, we have

$$
\left(\sum_{j=1}^{N} c_{j} e^{-2 \pi i\left\langle t, \ell^{(j)}\right\rangle} e^{-2 \pi i\left\langle\omega, m^{(j)}\right\rangle}\right) \cdot Z f(t, \omega)=e^{-2 \pi i\langle t, y\rangle} Z f(t-x, \omega+y)
$$

For more compact notation, let $(t, \omega)=z \in[0,1)^{n} \times[0,1)^{n}, F=Z f, \gamma=(-x, y)$ and let P be the trigonometric polynomial given by

$$
P(t, \omega)=\sum_{j=1}^{N} c_{j} e^{-2 \pi i\left\langle t, \ell^{(j)}\right\rangle} e^{-2 \pi i\left\langle\omega, m^{(j)}\right\rangle}
$$

Given these definitions, we can see that the product of the absolute values of P and F at the point z equals the absolute value of F at the point z shifted by γ. In other words, for $z \in[0,1)^{n} \times[0,1)^{n}$,

$$
|P(z)| \cdot|F(z)|=|F(z+\gamma)|
$$

Furthermore, $|F|$ is a $\mathbb{Z}^{2 n}$-periodic square-integrable function.
As referenced in Lemma 8.4 .2 of [2], if F is a continuous function, it is guaranteed to have at least one zero within the unit square defined by $[0,1)^{n} \times[0,1)^{n}$. By successively applying the equation

$$
|P(z)| \cdot|F(z)|=|F(z+\gamma)|
$$

we deduce that for any natural number m,

$$
|F(z+m \gamma)|=\prod_{j=0}^{m-1}|P(z+j \gamma)| \cdot|F(z)|
$$

Let Γ be the group generated by γ modulo $\mathbb{Z}^{2 n}$. Then Γ is a countable subgroup of the $2 n$ dimensional torus $[0,1)^{n} \times[0,1)^{n}$.
2.1. Proof of Proposition 1, If the set Γ is dense in the torus $[0,1)^{n} \times[0,1)^{n}$, it implies that the zero set of the function F must also be densely distributed in this unit square as well. Considering that F is a continuous function, it logically follows that F must be identically zero across its domain. This validates Proposition 1 .
2.2. Proof of Proposition 2. Fix $\lambda \in \operatorname{Zero}(Z f)$ then for any natural number m,

$$
|F(\lambda+m \gamma)|=\prod_{j=0}^{m-1}|P(\lambda+j \gamma)| \cdot|F(\lambda)|=0
$$

The calculation above suggests that if λ belongs to the zero set of $Z f$ (denoted as Zero $(Z f)$), then the term $(\lambda+m \gamma) \bmod \mathbb{Z}^{2 n}$ is also a member of the zero set of $Z f$. This highlights that the zero set of $Z f$ is invariant under the operation of Γ. More specifically, it underlines that the zero set of $Z f$ remains unaltered under the action of γ.
2.3. Proof of Proposition 3. Suppose that Γ is an infinite set and let Zero $(Z f)$ be the zero set of the Zak transform of f. Fix $\lambda \in \operatorname{Zero}(Z f)$ then for any natural number m,

$$
|F(\lambda+m \gamma)|=\prod_{j=0}^{m-1}|P(\lambda+j \gamma)| \cdot|F(\lambda)|=0
$$

This means that

$$
\lambda \in \operatorname{Zero}(Z f) \Rightarrow(\lambda+m \gamma) \text { modulo } \mathbb{Z}^{2 n} \in \operatorname{Zero}(Z f)
$$

and this shows that $|\operatorname{Zero}(Z f)|=\infty$, contradicting the assumption that the zero set of the Zak transform of f is finite.

References

[1] Corwin, Laurence, and Frederick P. Greenleaf. Representations of nilpotent Lie groups and their applications: Volume 1, Part 1, Basic theory and examples. Vol. 18. Cambridge university press, 1990.
[2] Gröchenig, Karlheinz. Applied and Numerical Harmonic Analysis. Birkhäuser Basel, 2001.
[3] Heil, C., Ramanathan, J., Topiwala, P. (1996). Linear independence of time-frequency translates. Proceedings of the American Mathematical Society, 124(9), 2787-2795.
[4] Kloos, T. (2015). Zeros of the Zak Transform of Totally Positive Functions. Journal of Fourier Analysis and Applications, 21, 1130-1145.
[5] Okoudjou, Kasso A., and Oussa, Vignon. "The HRT Conjecture for Two Classes of Special Configurations." ArXiv, vol. 2110.04053, 2021.

Department of Mathematics, Bridgewater State University, Bridgewater, MA 0235, USA
Email address: vignon.oussa@bridgew.edu

