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Abstract
In this note we provide a negative answer to a question raised by Kreisel concerning a
condition on the short-time Fourier transform that would imply the HRT conjecture.
In particular we provide a new type of uncertainty principle for the short-time Fourier
transform which forbids the arrangement of an arbitrary “bump with fat tail” profile.
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1 Introduction

A famous open problem in Gabor analysis is the so-calledHRT conjecture, concerning
the linear independence of finitely many time-frequency shifts of a non-trivial square-
integrable function [13]. To be precise, for x, ω ∈ R

d consider the translation and
modulation operators acting on f ∈ L2(Rd):

Tx f (t) = f (t − x), Mω f (t) = e2π i t ·ω f (t).

For z = (x, ω) ∈ R
2d we say that π(z) f = MωTx f is a time-frequency shift of f

along z. The HRT conjecture can thus be stated as follows:
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Conjecture Given g ∈ L2(Rd) \ {0} and a set � of finitely many distinct points
z1, . . . , zN ∈ R

2d , the set G(g,�) = {π(zk)g}Nk=1 is a linearly independent set of
functions in L2(Rd).

As of today this somewhat basic question is still unanswered. Nevertheless, the
conjecture has been proved for certain classes of functions or for special arrangements
of points. We address the reader to the surveys [14,15], [16, Sect. 11.9] and the paper
[22] for a detailed and updated state of the art on the issue. As a general remark we
mention that the difficulty of the problem is witnessed by the variety of techniques
involved in the known partial results, and also the surprising gap between the latter and
the contexts for which nothing is known. For example, a celebrated result by Linnell
[28] states that the conjecture is true for arbitrary g ∈ L2(Rd) and for � being a finite
subset of a full-rank lattice in R

2d and the proof is based on von Neumann algebras
arguments. In spite of the wide range of this partial result, a solution is still lacking for
smooth functions with fast decay (e.g., g ∈ S(Rd)) or for general configurations of
just four points. The problem is further complicated by numerical evidence in conflict
with analytic conclusions [10].

A recent contribution by Kreisel [19] proves the HRT conjecture under the assump-
tion that the distance between points in � is large compared to the decay of g. The
class of functions g which are best suited for this perspective include functions with
sharp descent near the origin or having a singularity away from which g is bounded. It
should be highlighted that reconstruction and interpolation problems in the same spirit
(i.e., involving sufficiently separated atoms) were already considered in more general
settings such as coorbit theory: see for instance the “piano reconstruction theorem”
[6, Thm. 25] and [7, Prop. 8.2].

Kreisel’s paper ends with a question on the short-time Fourier transform (STFT).
Recall that this is defined as

Vg f (x, ω) = 〈 f , π(z)g〉 =
∫
Rd

e−2π i t ·ω f (t)g(t − x)dt, z = (x, ω) ∈ R
2d ,

for given f , g ∈ L2(Rd), where 〈·, ·〉 denotes the inner product on L2(Rd). The STFT
plays a central role in modern time-frequency analysis [12].

Question 1 Given f ∈ L2(Rd) and R, N > 0, is there a way to design a window
g ∈ L2(Rd) such that the “bump with fat tail” condition

|Vg f (z)| <
|〈 f , g〉|

N
, |z| > R, (1)

holds?

From a heuristic point of view this would amount to determine a window g such
that Vg f shows a bump near the origin and a mild decay at infinity; that is, the energy
of the signal accumulates a little near the origin and then spreads on the tail (hence a fat
tail). This balance is unavoidable in view of the uncertainty principle, which forbids
an arbitrary accumulation near the origin [11,23]. The design of waveforms associated
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with peaky phase-space representations is a relevant problem in radar signal analysis.
We cannot frame here the huge engineering literature on the issue; we just mention
the comprehensive monograph [24] and the papers [1,17,18,25] for various aspects of
this topic.

A positive answer to Question 1 would prove the HRT conjecture by [19, Thm. 3].
In fact we prove that the answer is negative as a consequence of the following result,
which can be interpreted as a form of the uncertainty principle for the STFT [2,8,9,20].

Theorem 1.1 Let g(t) = e−π t2 and assume that there exist R > 0, N > 1 and
f ∈ L2(Rd) \ {0} such that

|Vg f (x, ω)| ≤ |〈 f , g〉|
N

, |ω| = R. (2)

Then

R >

√
log N

π
. (3)

This result is indeed a negative answer to Question 1 since |Vg f (x, ω)| =
|V f g(−x,−ω)|. In fact, a stronger result can be proved in the case where the cylinder
in (2) is replaced by a sphere.

Theorem 1.2 Let g(t) = e−π t2 and assume that there exists R > 0, N > 1 and
f ∈ L2(Rd) \ {0} such that

|Vg f (z)| ≤ |〈 f , g〉|
N

, |z| = R. (4)

Then

R ≥
√
2 log N

π
. (5)

Moreover, (4) holds with R = √
2 log N/π if and only if f (t) = ce−π t2 for some

c ∈ C \ {0}.
We conjecture that these results extend, in some form, to general f , g ∈ L2(Rd).

For example, we expect that in general Vg f cannot descend in the frequency direction
more quickly than the Fourier transform of g. However a precise formulation seems
not trivial to state and prove.

2 Proof of theMain Results and Remarks

Proof of Theorem 1.1 An explicit computation shows that

|Vg f (x,−ω)| =
∣∣∣∣
∫
Rd

e2π i t ·ωe−π(t−x)2 f (t)dt

∣∣∣∣ = e−πω2 |� f (z)|,
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where we set

� f (z) =
∫
Rd

e−π(t−z)2 f (t)dt, z = x + iω ∈ C
d .

Notice that � f is an entire function on C
d , since differentiation under the integral

sign is allowed. Define

Ma,R = sup
z∈Qa,R

|� f (z)|, Qa,R = {z = x + iω ∈ C
d : |x | ≤ a, |ω| ≤ R},

where a > 0will be fixed in amoment. Themaximum principle [21] implies that |� f |
takes the value Ma,R at some point of the boundary of Qa,R . Since f , g ∈ L2(Rd),
Vg f vanishes at infinity (e.g. [4, Corollary 3.10]), so that Vg f (x,−ω) → 0 for
|x | → +∞, uniformly with respect to ω ∈ R

d . Therefore � f (x + iω) → 0 for
|x | → +∞, uniformly with respect to ω over compact subsets of Rd . This shows that
for sufficiently large a > 0 we have |� f (z0)| = Ma,R for some point z0 = (x0, ω0)

with |ω0| = R.
In view of assumption (2) the following estimate holds:

Ma,Re
−πR2 = |Vg f (z0)| ≤ |� f (0)|

N
,

where we used the identity 〈 f , g〉 = Vg f (0) = � f (0); therefore

Ma,R ≤ eπR2

N
|� f (0)|.

Assume now that R ≤ √
log N/π ; this would imply Ma,R ≤ |� f (0)| and thus

� f would be constant on Qa,R , hence on C
d by analytic continuation [21]. Since

� f (x + iω) → 0 for |x | → +∞ as already showed above, we could conclude that
� f ≡ 0, hence Vg f ≡ 0 and then f ≡ 0, which is a contradiction. ��
Remark 2.1 Notice that Theorem 1.1 still holds in the case where the cylinder in (2) is
replaced by any other cylinder obtained from the previous one by a symplectic rotation
(cf. [5, Sect. 2.3.2]). Indeed, if Ŝ denotes a metaplectic operator [5] corresponding to
S ∈ Sp(d,R)∩O(2d,R), condition (2)with z = (x, ω) replaced by S−1z is equivalent
to

|Vg(Ŝ f )(x, ω)| ≤ |〈Ŝ f , g〉|
N

.

This can be easily seen by using the covariance property [12, Lemma 9.4.3]

|Vg f (S−1z)| = |VŜg Ŝ f (z)|,

the fact that Ŝ is unitary on L2(Rd) and that Ŝg = cg for some c ∈ C, |c| = 1, if
g(t) = e−π t2 [5, Prop. 252].
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Remark 2.2 The estimate for R in (3) is sharp. Consider indeed a dilated Gaussian
function fλ(t) = e−πλ2t2 , 0 < λ ≤ 1; a straightforward computation (see for instance
[3, Lemma 3.1]) shows that

Vg fλ(x, ω) = (1 + λ2)−d/2e
−2π i x ·ω

1+λ2 e
−π λ2x2

1+λ2 e
−π ω2

1+λ2 .

Condition (2) is thus satisfied if and only if

R ≥
√

(1 + λ2)
log N

π
,

and letting λ → 0+ yields the bound in (3).
It is worth emphasizing that there is no non-zero f ∈ L2(Rd) such that the optimal

bound in (3) can be attained, in contrast to other uncertainty principles for the STFT.

Proof of Theorem 1.2 Recall the connection between the STFT and the Bargmann
transform of a function f ∈ L2(Rd) [12, Prop. 3.4.1]:

Vg f (x,−ω) = 2−d/4eπ i x ·ωB f (z)e−π |z|2/2, z = x + iω ∈ C
d , (6)

where the Bargmann transform is defined by

B f (z) = 2d/4
∫
Rd

f (t)e2π t ·z−π t2−π z2/2dt;

(here g(t) = e−π t2 as in the statement). This correspondence is indeed a unitary
operator from L2(Rd) onto the Bargmann-Fock space F2(Cd), i.e. the Hilbert space
of all entire functions F on Cd such that e−π |·|2/2F ∈ L2(Cd), cf. [12, Sect. 3.4] (see
also [26,27]).

We now argue as in the proof of Theorem 1.1. After setting

MR = sup
z∈BR(0)

|B f (z)|, BR(0) = {z ∈ C
d : |z| ≤ R},

the maximum principle implies that |B f | takes the value MR on some point z with
|z| = R and moreover MR > 0 (otherwise by analytic continuation we would have
B f = 0 and therefore f = 0). Condition (4) then implies

MR ≤ eπR2/2

N
|B f (0)|.

If R <
√
2 log N/π we obtain MR < |B f (0)|, which is a contradiction. If R =√

2 log N/π then MR = |B f (0)| and therefore B f (z) = C , z ∈ C
d , again by the

maximum principle and analytic continuation, withC �= 0. On the other hand, a direct
computation and the injectivity of the Bargmann transform show that B f (z) = 1
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(hence |Vg f (z)| = 2−d/4e−π |z|2/2) if and only if f (t) = 2d/4e−π t2 . This gives the
last part of the claim. ��
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