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ABSTRACT. For z,y € R and f € L%(R), define (z,y)f(t) = e2™! f(t+ ) and
if A C R?, define S(f,A) = {(z,9)f | (z,y) € A}. It has been conjectured that
if f # 0, then S(f,A) is linearly independent over C; one motivation for this
problem comes from Gabor analysis. We shall prove that S(f,A) is linearly
independent if f # 0 and A is contained in a discrete subgroup of R?, and as
a byproduct we shall obtain some results on the group von Neumann algebra
generated by the operators {(z,y) | (z,y) € A}. Also, we shall prove these
results for the obvious generalization to R™.

1. INTRODUCTION

Let n be a positive integer, let G,, be the abelian group {(z,y) | =,y € R"}
with the operation addition (so G, = R?*"), and for 2,y € R", let z - y denote
the dot product z1y1 + -+ + pyn. Let C x G, denote the twisted group ring
(a twisted group ring is a particular kind of crossed product) which has C-basis
{G | g € Gu}, and multiplication satisfying (a,b) (z,y) = €*™*¥(a+ x,b +y). For
g € G,, we shall often write g instead of g if there is no danger of confusion, and
then ¢g~! will mean g—' rather than F Let L?(R") denote the Hilbert space of
square integrable functions {f: R" — C | [g, [f(t)|*dt < oo} with two functions
f1, fo € L?(R™) being equal if and only if fi(t) = fo(t) almost everywhere, and
let B(L?(R™)) denote the set of bounded linear operators on L?(R™). Then C x G,
acts on the left of L?(R") according to the rule (z,y) f(t) = 2™t f(t + x) and
extending to the whole of C x G,, by C-linearity. To check that this indeed defines
an action, we need only verify that (a,b)((z,y)f(t)) = ((a,b)(z,y))f(t), which is
indeed true because both sides equal e?™(@¥+04+v) f(¢ 4 g 4+ ). Thus we obtain
a homomorphism from C * G, into B(L?(R™)). Since C * G, is a simple ring by
Lemma 2.1, this homomorphism must be a monomorphism and so we may view
C %G, as a C-subalgebra of B(L?(R")). We shall consider the following conjecture.

Conjecture 1.1. Let 0 #60 € Cx G, and 0 # f € L2(R™). Then 0f # 0.

Motivation for studying this problem comes from Gabor analysis and in partic-
ular the conjecture on page 2790 of [4]. If G < G, then C x G will denote the
C-subalgebra of C % G,, which has C-basis {g | ¢ € G}. Of course when talking
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about discrete subsets of G,,, we are giving G,, the usual topology from R?”. We
shall prove

Theorem 1.2. Let G be a discrete subgroup of G,. If 00 € CxG and 0 # f €
L?(R™), then 0f # 0.

Of course it follows immediately that if G is a discrete subgroup of G,,, g € G,,
0#60 € gCxGand 0# f € L?R"), then f # 0. This means we can rephrase
the above result in terminology closer to that of [4] as follows. For z,y € R™ and
[ € L%(R"), define (z,y)f(t) = e*™ ' f(t + z) and if A C R*", define S(f,A) =
{(z,y)f | (z,y) € A}. Then Theorem 1.2 yields

Proposition 1.3. Let n be a positive integer, let A be a subset of R®™ of the form
g+ G where G is a discrete subgroup of R?", and let 0 # f € L>(R™). Then S(f,A)
is linearly independent.

As a byproduct, we shall obtain results on the von Neumann algebra generated
by C* G, which we shall denote by W« G. Thus W * G is the weak closure of Cx G
in B(L?(R™)) and is rather similar to the group von Neumann algebra of G. For
f.g € L*(R™), let (f,g) denote the inner product [p, f(£)g(t)dt, where ~denotes
complex conjugation, and let U(L?*(R™)) denote the set of closed densely defined
linear operators [5, §2.7] acting on L?(R™). Then the adjoint o* of a € U(L?(R"))
satisfies (af,g) = (f,a*g) whenever f,g € L?(R") and af, a*g are defined. Of
course * restricts to an involution on both B(L?*(R™)) and W * G. If G is a discrete
subgroup of G,, then W x G is a finite von Neumann algebra by Lemma 3.2; also
in many cases this can be deduced from Rieffel’s paper [7]. In this situation, we let
U * G indicate the operators of U(L?(R™)) which are affiliated to W * G [3, p. 150].
The results of [3] (especially theorem 1 and the proof of theorem 10) now show that
(UxG)* =U =G, Ux*G is a x-regular ring containing W x G, and every element
of U * G can be written in the form v6~! where 7,6 € W * G. In particular every
nonzero divisor in W * G is invertible in U % G. We shall prove

Theorem 1.4. Let G be a discrete subgroup of G,. Then W x G is a finite von
Neumann algebra, every nonzero element of C % G is invertible in U x G, and the
set {071 |y € CxG,0# 5 € Cx G} is a division subring of U x G.

Let L be a locally compact group, let G be a torsion free subgroup of L, and let
L?(L) denote the Hilbert space of square integrable functions on L with respect to
the left Haar measure on L. Then G acts on the left of L2(L) according to the rule
gf() = f(g7t) for g € G, f € L3(L),l € L. For f € L?>(L)\ 0, a closely related
problem to Conjecture 1.1 is to determine whether the set {gf | g € G} is linearly
independent over C. If the von Neumann algebra W x G generated by G is a finite
von Neumann algebra, then by using the techniques of this paper, it is possible
in many cases to show that the set {gf | ¢ € G} is linearly independent. On the
other hand if W x GG is not a finite von Neumann algebra, then the techniques of
this paper cannot be applied. It will usually be the case that W * G is not finite if
G is not discrete and has no abelian subgroup of finite index. A specific example
would be to let L be the Heisenberg group consisting of upper unitriangular 3 by 3
matrices with entries in R, in other words matrices of the form
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where a,b,c € R, and to let G = L. Then it is not known in this case whether for
f € L*L)\0, the set {gf | g € G} is linearly independent.

I am very grateful to Chris Heil and Jonathan Rosenblatt for bringing the prob-
lem studied in this paper to my attention, and for some helpful email correspon-
dence.

2. NOTATION, TERMINOLOGY AND ASSUMED RESULTS

The identity of a group will be denoted by either 0 or 1. If n is a positive integer
and R is a ring, then M,,(R) will denote the n by n matrices over R, and we shall
let 0;; indicate the Kronecker delta, so §;; = 0 if ¢ # j and ;35 = 1 if ¢ = j. The
identity matrix of M, (R) will be denoted by I, and the zero matrix of M, (R)
will be denoted by 0,,. We shall view vectors in R™ as column vectors rather than
row vectors. A lattice in R™ will mean a discrete subgroup of Z-rank n; in other
words a discrete subgroup of finite covolume (note that this is a different definition
of lattice from that of [4, p. 2791]). f a =3 o Agg € C* G, where Ay € C for
all g € G, then the support of «, denoted supp «, is the set {g € G, | A\, # 0}.
We shall use the notation || f||2 for the norm +/(f, f) of an element f € L*(R"),
and X for the closure of a subset X in L?(R"). The commutant of a subset A of
B(L*(R™)) is A’ = {z € B(L*(R")) | ax = za for all a € A}. If A = A*, then
A’ is a von Neumann algebra and by von Neumann’s double commutant theorem
[1, theorem 1.2.1], A is dense in A” in the weak operator topology. Thus another
description of W x G is the double commutant of C x G in B(L*(R™)). In the
case W x (G is a finite von Neumann algebra, we can now describe U * G as those
unbounded operators in U (L?(R™)) which commute with every element of (W xG)'.

Lemma 2.1. Cx G, is a simple ring.

Proof. Suppose 0 # I <<C«xG,, with I # CxG,,, and choose 0 # « € I with minimal
support. If g € suppa, then 1 € suppg ' and g~ 'a € I, so we may assume that
1 € suppa. Since I # C % G,,, we may choose a € G, such that 1 # a € supp .
Then there exists g € G, such that gag—! # @, and now we have 0 # gag~'—a € I.
This contradicts the minimality of supp @ because |supp(gag—! — a)| < |suppa/,
and the result follows. O

If Ris a ring and o is an automorphism of R, then R,[X] will denote the
twisted polynomial ring over R in the indeterminate X, so multiplication is defined
by Y aiX Y b X7 =37, (34 j—p ai0'b;) X" We say that R is an Ore domain if
it is contained in a division ring D, called the division ring of fractions of R, such
that every element of D can be written in the form rs~! and also in the form s~ !,
with 7, s € R and s # 0. Of course the division ring D containing R is unique up to
R-isomorphism. Also if R is contained in a ring D’ such that every nonzero element
of R is invertible, then the set {rs™! | r,s € R and s # 0} is the division ring of

fractions containing R. The following two elementary results are well known.

Lemma 2.2. Let R be an Ore domain with division ring of fractions D, and let
o be an automorphism of R. Then o extends uniquely to an automorphism of D,
which we shall also call o, and if a, 8 € D,[X], then there exists r € R\ 0 such
that ra, rf € Ry [X].

Lemma 2.3. Let G be a subgroup of G,. Then CxG is an Ore domain, and if I, J
are nonzero left ideals of Cx G, then I NJ # 0.
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Finally we require the following:

Lemma 2.4. Let G be a discrete subgroup of G,, let H < G such that G/H is
infinite cyclic, and let v € G such that Hx is a generator for G/H. If ¢ € C and
|C| = 1, then there exists y € G, such that yhyy* = h for allh € H and jzy~! = (Z
in Cx*xG,.

Proof. Since G is discrete, we may choose m € Z and a subset {h1, ..., h;y} which
generates H and is linearly independent over R. Note that {hq,..., hy,z} is also
linearly independent over R. Choose t € R such that e?™® = ¢, and define a bilinear
form 3: G, — R by 3((a,b),(c,d)) =a-d—b-c, where a,b,c,d € R". Note that in
C % G, we have

(a,b)(c,d)(a,b)~! = e2mil@d=bo) (¢ g),

It is easily checked that (3 is nondegenerate, so there exists y € G, such that
B(y, h;) =0 for all ¢ and (y,x) = t. This completes the proof. O

3. FAITHFUL TRACES

In this section, we show that W % G has a faithful weakly continuous tracial
state, which in particular will establish that W %G is a finite von Neumann algebra.
Throughout this section, n will be a positive integer. The purpose of the next lemma
is to reduce to the case when G is a lattice in R?” such that GN1 x R*" =1 x Z™;
its proof is modelled on [4, §2, p. 2790].

We shall think of R?" as R* ®R", so we can view R” as a subgroup of R?" in the
usual way via the map x +— (x,0). We then have a monomorphism ©: G,, — Ga,
and this induces a monomorphism C x G,, — C x Ga,,, which we shall also call .

Given f,g € L?*(R"), we can form the element f ® g € L?(R?") defined by
(f®g)(z,y) = f(z)g(y) for ,y € R", and then the functions of the form Y _." | fi®g;
are dense in L2(R?"). If § € B(L?(R")), then we have a well defined operator
01 € B(L*(R?")) satisfying (0®1)(f®g) = (0f)®g for all f,g € L*(R™), and this
yields a weakly continuous *-monomorphism 6 — 6 ® 1: B(L*(R")) — B(L?(R?")).

Note that when we view C x G,, and C * Go,, as subalgebras of B(L?(R")) and
B(L?(R?")) respectively, then () = § ® 1 for all # € C % G,,. Furthermore, if
G < Gy, then ¢ induces isomorphisms W« G — W x G and (assuming W x G is a
finite von Neumann algebra) U « G — U x9G, which means we may identify G with
the subgroup ¥ G of Gs,; we shall do this without further comment and without
using v in the future.

Let {e1,...,e2,} denote the standard basis for R?", so e; has a 1 in the ith
position and zeros elsewhere, and e; - e; = 0;;. If G < G,,, then we define {CG} =
{Ag | XA € C and g € G}, a subset of C * G.

Lemma 3.1. Let G be a discrete subgroup of G,. Then there exists a lattice H
in Gon and a unitary operator u € B(L?*(R?")), such that H N1 x R?" = 1 x
72" u{CGap}u~t = {CGap} and u{CG}u~t C {CH}.

Proof. Choose an R-basis {g1,...,92,} for G, such that {g1,...,9-} is a Z-basis
for G, where r is the rank of G. Let £ = {(e1,0),...,(e2n,0),(0,e1),...,(0,e2,)},
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let

F= {(61, €n+1)/\/§, (627 €n+2)/\/§, cee (env 6271)/\/5) (en+17 61)/\/§a
(ént2,€2)/V2, ..., (ean,en)/V2, (—eni1,€1)/V2, (—enia, €2)/V2,. ..,
(_62717 en)/ﬁﬂ (_617 en+1)/\/§7 (_627 en+2)/\/§7 cey (_em 6271)/\/5}7

and let

K={g,--, 92, (—€n+1,€1)/\/§, (—€n+2,€2)/\/§, ) (—€2n,€n)/\/§,
(_617 €n+1)/\/§, (_625 6n+2)/\/§, R (_env 6271)/\/5}7

so £, F and K are R-bases of G3,,. For i = 1,... 4n, we shall let é;, f;, k; denote
the ith basis elements of £, F, IC respectively, and we shall let K be the lattice in
Go,, which has Z-basis K. Let A; denote the coordinates of k; with respect to the
basis F, and let a;; denote the jth coordinate of A;. Then for 2n 4+ 1 < i < 4n,
aj; =1if j =i and a;; = 0 if j # i. Now define h; = Z?Zl a;i€; € Gop, and let H
be the subgroup of G, generated by the h;. Then H is a lattice in Go, such that
HnN1lxR?>™=1x 2z

Let T be the transition matrix from £ to F, and let J = Jo, = ((I)” é”) €

My, (R). Thus if T has entries ¢;;, then f; = Z?Zl t;j€;, and if we think of the A;
as column vectors, then the coordinates of k; with respect to £ are T'A;. Also

T (Ve aes)

_ I2n OQn JQn/\/5 02n OQn _IQn I2n OQn
_J27’L I2n 02n J2n\/§ I2’I’L OZTL _J27’L I2’I’L '

Let 7, a, B,7: Goy — Gap, be the linear mappings determined by the matrices

T J2n/\/§ OZTL I2n OZTL 02n _IQn

, 02n JZn\/§ ’ _J2n I2n ’ I2n 02n
respectively, with respect to the basis &, so 7é; = f; for all i. Then 7H = K O G,
so it will be sufficient to show that there exists a unitary operator u € B(L?*(R?*"))
such that u'Cgu = Cryg for all ¢ € Ga,,. Since 7 = Bay3, it will be sufficient to do

this with a, 8, in place of 7. We now use metaplectic transformations [8, p. 578].
Write g = (x,y) where z,y € R?", and then we have three cases to consider.

JZn/\/i 02n
OQn \/§J2n
wf(t) = 27"/2f(Jt/\/2) (we are considering ¢ as a column vector in R*” here).
Then u is C-linear and |[uf]|s = || f||2 for all f € L?(R?"), hence u is a unitary
operator. Also u=!f(t) = 2"/2f(\/2Jt) because J3, = I,, consequently
wlguf(t) =ulg2 MR f(T/V2) = uT TR f (It + ) /V2)
= 62”\/§Jy'tf(t + Jx/V2)  because Jo, is symmetric
= (ag) f(t)

for all t € R?" and for all f € L?(R?*"). Thus v~ 'gu = ag as required.

1. The matrix o = < ) For f € L?*(R?") and t € R?", we define
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2. The matrix 8 = Ij" 9271) Here we define uf(t) = e "¢t f(t). Then
—J2n 2n
u is C-linear and ||uf||2 = ||f||2, so u is a unitary operator. Since u=!f(t) =
eﬂ'th-tf(t)7

wlguf(t) = u~lge It f(1) =y~ Le2mitemmi (o) () £(4 4 )
— em‘Jt-teQwiy~te—mJ(t+m)~(t+m)f(t + :z:)
= e TR 2mit-(y=J2) £(1 4 2} because Ja, is symmetric
= e T (Bg) f(t)

for all t € R?", and we have shown that u~!gu € C(Bg).

(};: _Oézn> . Here we use the Fourier transform; specifically

wf(t) = [gon €75 f(s)ds, and then u™ ' f(t) = [o,, e 2™ f(s) ds. Observe
that (x,0)uf(t) = u(0,x)f(t) and (0,y)uf(t) = u(—y,0)f(t), consequently

u_l(xv y)u =u! (0,y)(z,0)u = (—y,0)(0,z) = e—2m’w-y(_y7 CL‘) = 6_2m‘wvy7(xa y)
and we deduce that = 'Cgu = Crg.

3. The matrix v = <

This completes the proof of Lemma 3.1 O
Lemma 3.2. Let G be a discrete subgroup of G,, and define 7: Cx G — C by
79 =0 when1# g€ G, and 71 =1. Then

i) 7 extends to a weakly continuous C-linear map W * G — C.
If a, 8 € W % G, then T(aff) = 7(Ba).

=

ii)
ii) Ifa« € WG and x € G, then 7(Zaz™1) = 7(a).
v) If e is a nonzero projection in W x G, then 0 < 7e < 1.
)
)

—_— o~

(i
(i
v) Let e, f be projections in W x G. If eL*(R™) C fL?(R"™), then Te < 7f.

Let e, f be projections in W x G, and let h be the projection of L*(R™) onto
eL2(R") + fL2(R"). Then h € W x G and if eL?>(R") N fL*(R™) = 0, then
Te+71f =Th.

=

(vi

Proof. Since G is a discrete subgroup of G,,, there is by Lemma 3.1, a lattice H
in Go, and a unitary operator u € B(L?(R?")) such that H N1 x R?" = 1 x
72" u{CGap}u~t = {CGy,} and uC x Gu=! C C x H. If we can find a weakly
continuous C-linear map 7: C *x H — C with the required properties, then the
weakly continuous C-linear map a +— 7(uau™!) for a € CxG will suffice. Therefore
we may assume that G is a lattice in G,, and GN1 x R® =1 x Z". If a is a positive
number, we shall let C(a) denote the standard unit cube in R™ with side of length
a; thus C(a) = {(a1,...,a,) | 0 < a; < a for all i}.

(i) Choose a positive integer b such that hC(1/b) NC(1/b) = O whenever (h, k) €
G\ (1 x Z™), which is possible because G is a lattice in G,, such that GN1 x R™ =
1 x Z", and set C = C(1/b). Let ¢ = b, let Cy,...,C. denote the c translates
of C which are contained in the unit cube C(1), and for each i, let x; denote the
characteristic function of C;. For 8 € W x GG, define

0= 3 0% =Y [ oxa
i=1 i=17Ci
Let g € G and write g = (h, k) where h,k € R™. Then gy;(t) = e2™**x;(t + h), so
if h # 0 we have gx;(t) = 0 for all ¢t € C; and hence 7g = 0. On the other hand if
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h=0and k # 0, then k € Z™\0 because G is a lattice such that GN1xR™ = 1 xZ",
consequently

(&
i=17Ci N

Finally 71 = 1 and (i) is proven.

(il) If x,y € G, then xy = 1 if and only if yz = 1. Therefore 7z = 74z = 0 if
zy # 1 and g = gz if zy = 1, hence 72y = 7y for all z,y € G and we deduce
that T8 = 70« for all a, 8 € C+G. Since 7 is weakly continuous and W x G is the
weak closure of C x G, we see that Taf = 70« for all o, 8 € W x GG, which proves
(i).

(iii) Define o: W * G — C by o(a) = 7(zaz™!). Observe that o1 = 1 and if
1 # g € G, then 0g = 7(xgz~!) = 0 because zgr—! = (g for some ¢ € C with
|(] = 1. Thus og = 7¢g for all g € G and since o is a weakly continuous C-linear
map, we deduce that o(a) = 7(«) for all « € W * G, which is the required result.

(iv) Note that if e is a projection in W x G, then e*e = e, and hence

c c

TE = Z<€*€Xia Xi) = Z<€Xn exi) > 0.

i=1 i=1
Let K =7Z" x Z" < G,,. If k € K, then e = 7(k~tek) by (iii) and we deduce that

(& C

e =T1(k"'ek) = Z(k‘le*ekxi, Xi) = Z(ekxi, ekx:).
i=1 i=1

Let x denote the characteristic function of C(1), and suppose 7e = 0. Then eky; = 0
for all 4, hence eky = 0 for all k € K. Now the set {kx | k € K} forms a Hilbert
basis for L?(R™) so if 7e = 0, we see that ef = 0 for all f € L?(R") and we deduce
that e = 0. Also 1 — e is a projection if e is a projection, so applying the above to
1 — e we obtain 0 < 7(1 — e), hence 7e < 1 and (iv) follows.

(v) Let h be the projection of L?(R™) onto the orthogonal complement of e L?(R™)
in fL?>(R"). Then e + h = f, hence 7e + 7h = 7f. Thus h € W * G and the result
follows from (iv).

(vi) Let u be a unitary operator in (C * G)'. Then ueu™! = e and ufu=! = f.
Since h is the projection of L?(R™) onto eL2(R™) + fL2(R™), we see that uhu~! is
the projection of L2(R"™) onto ueu=1L2(R") + ufu—1L2(R") = eL2(R™) + fL2(R™)
and we deduce that uhu~! = h. Therefore uh = hu. Now (CxG)’ is a von Neumann
algebra, so any element of (C x G)" is a C-linear sum of unitary elements, hence
xh = hzx for all x € (C x G)" and we conclude that h € W * G.

We now claim that h = eU f [2, p. 4]. Since eL?(R™) C hL?*(R"), we see that
e = he and hence e < h. Similarly f < h and soeU f < h. Now let g = e U f.
Then gL?(R") D eL?(R"), fL*(R") and hence gL?(R") D hL?*(R"). We deduce
that g > h, consequently g = h and the claim is established.

If eL2(R™) N fL?(R™) = 0, then (e f)L?(R") C eL?(R™) N fL?(R™) = 0. Since
W % G is a von Neumann algebra, we may apply the parallelogram law to deduce
that e ~ eUf—f [2, §1,813]. Thus there is an element w € WG such that w*w = e
and ww* =eU f — f. Since 7(w*w) = 7(ww*), we deduce that 7e = 7(e U f — f)
and hence 7e + 7f = 7(e U f) = 7h. This completes the proof. O
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4. PROOFS
Theorems 1.2 and 1.4 are now immediate consequences of the following result.

Lemma 4.1. Let G be a discrete subgroup of R™ and let 6 € Cx G\ 0. Then
(i) If 0 # f € L3(R"), then 0f # 0.
(i) @ is invertible in U x G.
(iii) The set {y0~ ! |y € CxG,0# 6 € Cx G} is a division subring of U * G, and
is equal to {671y |y € CxG,0# 6 € CxG}.

Proof. Since G is a discrete subgroup of G, it is a free abelian group of rank at
most 2n. We shall prove the result by induction on the rank of G, the result being
trivially true if the rank of G is zero, because then G = 1. Thus we may assume that
the rank of G is strictly positive, and then there exists H <t G such that G/H = Z.
Since H has strictly smaller rank than G, we may assume that the result is true
for H. Let 7: W x G — C be the weakly continuous tracial state obtained from
Lemma 3.2.

(i) For a € C G, let kera = {f € L?(R") | af = 0}, and let N(a) be the
projection from L2(R™) onto ker . Suppose u is a unitary element in (C * G)’.
Then v N (a)u = N(u"tau) = N(a). Since (C x G)' is a von Neumann algebra,
every element of (C * G)’ is a linear combination of unitary elements of (C * G)’
and we deduce that N (a) commutes with every element of (C * G)'. Therefore
N(a) e W xG.

Let v = sup{t(N(a)) | 0 # a« € CxG}. If v = 0, then N(6) = 0 by
Lemma 3.2(iv), hence kerd = 0 and the result follows, so we may assume that
0 < v < 1. Therefore we may choose o € C * G such that 7A(a) > v/2. Since
G/H is infinite cyclic, there exists © € G such that Hx generates G/H, and then
we may write v = Y . ;x’ where o € Cx H and «o; = 0 for all but finitely
many i. By replacing o with 2™« for some integer m, we may assume that ag # 0
and a; = 0 for all i < 0.

By induction, there is a division subring D of U x H containing Cx H which is the
division ring of fractions of C+ H. Let ¢ be the automorphism 3 — zfBz~!: CxH —
C =« H. By Lemma 2.2 we may extend ¢ to an automorphism of D, which we shall
also call &. We now have a natural ring homomorphism 0: D,[X] — U x G, defined
by 6X =z and 6d = d for all d € D, which maps (C x H),[X] into C «x G. By [6,
lemma 16], there exists ¢ € C with |{| =1 and 8',+' € D,[X] such that

B Z ozalqui +4 Zaalo@(iXi =1.
i i

By Lemma 2.2, there exists 0 # r € C+ H such that r3'ag ', ryay* € (Cx H), [X],
so setting 8 = r3ag ! and v = ry'ag !, we have 3,7 € (C * H),[X] and

ﬂzaiXi‘F’}/ZOziciXi =7

Set o/ = 3", a;¢*z". Applying the homomorphism 6, we now have fa+~ya/ =r. By
Lemma 2.4 there exists y € G, such that yhy~! = h for all h € H and yaxy~' = (z,
and then we have yay~! = o/. Thus kero’ = y(ker a)y~!, consequently N(a’) =
yN(a)y~! and using Lemma 3.2(iii), we deduce that TA/(a/) = 7N (a) > v/2.
Suppose f € kera Nkera’. Then af = o'f = 0, hence rf = 0 because r =
Ba + va’, and we can invoke our inductive hypothesis to deduce that f = 0.
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Therefore kera Nkero/ = 0. If 7 is the projection onto ker o + ker o/, we now see
from Lemma 3.2(vi) that

m=7N(a) + TN () >v/2+v/2 =

Using Lemma 2.3 we may choose § so that 0 # § € C* GaNC x Ga’, and then
kerd D ker a + ker o/, hence 7N (§) > 7w > v by Lemma 3.2(v). This contradicts
the definition of v and (i) is proven.
(ii) This follows from (i) and the remarks immediately preceding Theorem 1.4.
(iii) This follows from (ii), Lemma 2.3 and the comments immediately preceding
Lemma 2.2. O
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