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Abstract
Given f ∈ C0(R

n) and a finite set� ⊂ R
2n wedemonstrate the linear independence of

the set of time-frequency translatesG( f ,�) = {π(λ) f }λ∈� when the time coordinates
of points in � are far apart relative to the decay of f . As a corollary, we prove that for
any f ∈ C0(R

n) and finite � ⊂ R
2n there exist infinitely many dilations Dr such that

G(Dr f ,�) is linearly independent. Furthermore, we prove that G( f ,�) is linearly
independent for functions like f (t) = cos(t)

|t | which have a singularity and are bounded
away from any neighborhood of the singularity.
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1 Introduction

Consider the translation operator Tx f = f (t − x) and the modulation operator
Mω f = e2π iω·t f (t) acting on f ∈ L2(Rn). For λ = (x, ω) ∈ R

2n we define
the time-frequency shift π(λ) f = MωTx f . The Heil–Ramanathan–Topiwala (HRT)
Conjecture [8] states

Conjecture 1 Suppose f ∈ L2(R) is nonzero and � ⊂ R
2 is a finite set. Then the

collection of functions G( f ,�) = {π(λ) f }λ∈� is linearly independent.

The HRTConjecture is still open in its most general form, but it has been proven under
various additional assumptions on the function f and the point set � [1–5,8–11].

In this paper we will prove Conjecture 1 in cases where the distance between points
in � is large relative to the decay of f .
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Theorem 1 Let f ∈ C0(R
n), let � = {(xi , ωi )}Ni=1 ⊂ R

2n be a finite set, and fix R

so that | f (t)| <
| f (0)|
N−1 for all t outside of the ball of radius R around the origin. If

||xi − x j || > R whenever i �= j then G( f ,�) is linearly independent.

The intuition for Theorem 1 is that if the points in � are spaced far apart then in any
linear dependence the tails of translates of f must combine to cancel the peaks of
f . This requires putting large coefficients on the translates of f . However by putting
large coefficients on the translates of f , we make the peaks of the translates more
difficult to cancel, leading to a contradiction.

Theorem 1 is most effective when | f | drops off steeply near the origin. Given any
f ∈ C0(R

n) we can engineer such a steep descent by applying a sufficiently large
dilation, assuming f (0) �= 0. We denote by Dr the unitary operator which dilates a
function f uniformly along all the coordinate axes.

Corollary 1 Suppose f ∈ C0(R
n) and f (0) �= 0. Given � = {(xi , ωi )}Ni=1 ⊂ R

2n

there exists r > 0 such that G(Dr ′ f ,�) is linearly independent for all 0 < r ′ < r .

Similarly, if f has a singularity away from which it is bounded then we can find
translates of f which have an arbitrarily steep drop off. Thuswe can proveConjecture 1
for such functions.

Theorem 2 Let f be continuous except at a point p where limt→p | f (t)| = ∞.

Assume that f is bounded away from any neighborhood of p. Then G( f ,�) is linearly
independent for any finite � ⊂ R

2n .

2 Proofs, Examples, and Extensions

The following lemma captures the intuition for Theorem 1 described above.

Lemma 1 Let S = {xi }Ni=1 ⊂ R
n, f ∈ C(Rn), and E = {ei }Ni=1 ⊂ C(Rn) such that

|ei (t)| = 1 for all t ∈ R
n . Furthermore, suppose that | f (xi − x j )| <

| f (0)|
N−1 whenever

xi , x j are distinct points in S. Then the collection of functions {ei (t) f (t − xi )}Ni=1 is
linearly independent.

Proof Assume that the functions {ei (t) f (t − xi )}Ni=1 are linearly dependent, so that
for some coefficients {ci }Ni=1 we have

N∑

i=1

ci ei f (t − xi ) = 0.

Since f is continuous this equality holds for all t ∈ R
n . If we evaluate the left hand

side at the point x j we can rearrange to get the following inequality
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|c j || f (0)| =
∣∣∣∣∣∣

N∑

i=1,i �= j

ci ei (x j ) f (x j − xi )

∣∣∣∣∣∣

≤
N∑

i=1,i �= j

|ci || f (x j − xi )|

<
| f (0)|
N − 1

N∑

i=1,i �= j

|ci |.

After summing all these inequalities and canceling | f (0)| from each side, we see that

N∑

j=1

|c j | <
1

N − 1

N∑

j=1

N∑

i=1,i �= j

|ci | =
N∑

j=1

|c j |

which is a contradiction. The last equality follows since each term |ci | appears in
exactly N − 1 of the inner sums in the second expression. 	


Now we can prove our first theorem.

Proof of Theorem 1 We can apply Lemma 1 with S = {xi }Ni=1 and E = {e2π iωi ·t }Ni=1.

Since the points xi − x j all lie outside the ball of radius R around the origin, | f (xi −
x j )| <

| f (0)|
N−1 as required. 	


Note that we only need to assume that the time coordinates of the points in � are
spaced far apart for Theorem 1 to hold. Although the specific value f (0) suspiciously
appears in our hypothesis, G( f ,�) is linearly independent if and only if G(Tx f ,�)

is linearly independent for all x ∈ R
n, so we can always translate f to put the most

advantageous value at the origin.
Given Theorem 1, it is straightforward to deduce Corollary 1.

Proof of Corollary 1 Since f ∈ C0(R
n) and f (0) �= 0,we can find a value R > 0 such

that | f (t)| <
| f (0)|
N−1 for all t outside of a ball of radius R around 0. Applying a dilation

Dr , we see that |Dr f (t)| <
|Dr f (0)|
N−1 whenever t lies outside a ball of radius r R. Let

M = mini, j ||xi − x j || be the minimum distance between any two points in �. Then
whenever 0 < r < M

R we can apply Theorem 1 to show that G(Dr f ,�) is linearly
independent. 	


Since translations and modulations are exchanged under the Fourier transform, we
get an analogous result in the frequency domain.

Corollary 2 Let f ∈ L1(Rn) so that f̂ ∈ C0(R
n) and let � = {(xi , ωi )}Ni=1 ⊂ R

2n .

Then there exists a value r > 0 such thatG(Dr ′ f ,�) is linearly independent whenever
r ′ > r .
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Example 1 Consider the family of functions

fC,ω =
{

cos(ωt)
|t | |t | ≥ 1

C

C cos(ωt) |t | < 1
C .

The functions fC,ω are in L2(R)∩C0(R).Nonetheless they decay slowly at infinity
and oscillate in the tail. To the author’s knowledge, such functions are not covered by
the results of [1,2], or [11] which assume fast decay at infinity or ultimate positivity.
Given � = {(xi , ωi )}Ni=1 let M = mini, j |xi − x j |. Then by applying Theorem 1, we
can see thatG( fC,ω,�) is linearly independent wheneverC > N−1

M . For the four point
set �′ = {(0, 0), (1, 0), (0, 1), (√2,

√
2)} we have G( fω,C ,�′) linearly independent

whenever C > 3√
2−1

.

Example 1 suggests that the function f (t) = cos(ωt)
|t | should satisfy Conjecture 1

in full, as it is the pointwise limit of fC,ω as C → ∞. This is true, and is implied by
Theorem 2 which we are now ready to prove.

Proof of Theorem 2 Without loss of generality we may assume that p = 0. If we fix
� ⊂ R

2n of size N such that the minimum distance between the x-coordinates in �

is R, we would like to find a translate of f which satisfies | f (t + x)| <
| f (x)|
N−1 outside

the ball of radius R around x . If we can find such an x then the argument in the proof
of Lemma 1 applies to show G( f ,�) is linearly independent. To find such an x, we
first note that since f is bounded away from 0 we can find A such that | f (t)| < A
outside a ball of radius R

2 around 0. Since limt→0 | f (t)| = ∞, we can find an x less
than R

2 such that | f (x)| > A(N − 1), and this x satisfies the criteria described above.
	


Example 2 We can adapt the examples above to find functions in L2(R) satisfying
Conjecture 1. Consider the family of functions

gω(t) =
⎧
⎨

⎩

cos(ωt)

|t | 14
|t | < 1

cos(ωt)
|t | otherwise.

The functions gω(t) are in L2(R) ∩C0(R). By Theorem 2, they satisfy Conjecture 1.

By applying the Short Time Fourier Transform (STFT) we can demonstrate linear
independence when the points in � are sufficiently far apart in the time-frequency
plane. For f , g ∈ L2(Rn) the STFT of f with respect to g is given by

Vg f (λ) = 〈 f , π(λ)g〉.

It is easy to see [7] that Vg f ∈ C0(R
2n) and satisfies the identity

VgTuMη f (x, ω) = e−2π iu·ωVg f (x − u, ω − η).
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Theorem 3 Suppose f , g ∈ L2(Rn) so that Vg f ∈ C0(R
2n). Let � = {λi }Ni=1 ⊂ R

2n

and fix R so that |Vg f (λ)| <
|Vg f (0)|
N−1 = |〈 f ,g〉|

N−1 for all λ outside of the ball of radius
R around the origin. If ||λi − λ j || > R whenever i �= j then G( f ,�) is linearly
independent.

Proof Suppose G( f ,�) is linearly dependent so that for some coefficients ci we have

N∑

i=1

ciπ(λi ) f = 0.

Then by applying the STFT with respect to g we have

N∑

i=1

c′
i e

−2π iui ·ωVg f (λ − λi ) =
N∑

i=1

c′
i Vgπ(λi ) f = 0

where ui denotes the time coordinate of λi and c′
i = e−2π i xiωi ci . However we can

apply Lemma 1 to Vg f with S = {λi }Ni=1 and E = {e−2π iui ·ω}Ni=1 to show that
the functions {e−2π iui ·ωVg f (λ − λi )}Ni=1 must be linearly independent, which is a
contradiction. 	


3 Discussion

Our Lemma 1 and Theorem 1 demonstrate that G( f ,�) is linearly independent when
the points of � are far apart relative to the decay in f . However our proofs use no
properties specific to the modulations e2π iωt , and apply just as well to functions in
L p(Rn) when n > 1 and p > 2. Given the generality of Theorem 1 and in light of the
following example, we can see that Theorem 1 alone provides only loose evidence for
Conjecture 1.

Example 3 In [6] the authors demonstrate that the function

f (a, b) =
∫ 2

3

1
3

exp(i(a cos−1(t) + b cos−1(1 − t)))dt

is in C0(R
2) ∩ L p(R2) for p > 4 and satisfies the dependence

2 f (a, b) = f (a + 1, b) + f (a − 1, b) + f (a, b + 1) + f (a, b − 1).

Nonetheless, our Theorem 1 and Corollary 1 can be applied to f , though Theorem 1
clearly does not rule out the dependence above.

One could try to expand the utility of Theorem3 by leveraging the choice ofwindow
function as a free variable. One could leave f and�fixed but vary thewindow function
g in an attempt to satisfy the hypotheses. This leads naturally to the following question.
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Question 1 Given f ∈ L2(Rn), R > 0, N > 0 can we design a window g ∈ L2(Rn)

so that |Vg f | <
|〈 f ,g〉|

N outside the ball of radius R around the origin?

A positive answer to Question 1 would prove the HRT conjecture. We would want
to design g so that Vg f decreases sharply near the origin and then has a fat tail,
since we know that the probability mass of Vg f cannot be too heavily concentrated
near the origin due to various uncertainty principles for the STFT. Alternatively, it
may be possible to develop a kind of uncertainty principle which answers Question 1
negatively.
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