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Abstract

In this talk, we will introduce the HRT conjecture and prove it for two
simple cases. Then, we will introduce the Fock space of entire functions
and use it to show that the HRT conjecture holds for point configurations
where all but one point lie on a line. This talk is based on a book chapter
by Daniel W. Stroock [4].

1 The HRT conjecture

Given (x, ω) ∈ R2, define the time-frequency shift π(x,ω) : L
2(R) → L2(R) by

π(x,ω)f(t) := e−πixω · f(t− x)e2πitω.

We can directly compute that

π(x′,ω′) ◦ π(x,ω) = eπi(xω
′−x′ω) · π(x+x′,ω+ω′).

Therefore, (or, alternatively, by the unitarity of time-frequency shifts) we have
(π(x,ω))

−1 = π(−x,−ω).

Conjecture 1 (HRT conjecture; [2, p. 2790]). Let (λj)
n
j=1 ∈ R2 be distinct and

let f ∈ L2(R) be non-trivial. Then, (πλjf)
n
j=1 ∈ L2(R) is linearly independent.

Let us start by looking at some easy cases.

Proposition 2. The HRT conjecture holds for n = 2.

Proof. Let λ1, λ2 ∈ R2 be distinct and f ∈ L2(R) non-trivial. Write

λ1 = (x1, ω1), λ2 = (x2, ω2)

and suppose by contradiction that there exists (c1, c2) ∈ R2 \ {(0, 0)} such that

c1πλ1
f + c2πλ2

f = 0.

We may assume that c1 ̸= 0 by relabelling if necessary. Therefore,

f = −c2
c1

(
π−1
λ1

◦ πλ2

)
f = −c2

c1

(
π(−x1,−ω1) ◦ π(x2,ω2)

)
f

= −c2
c1

eπi(x1ω2−x2ω1)π(x2−x1,ω2−ω1)f = cπ(x,ω)f,
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for correctly chosen c ∈ C and (x, ω) ∈ R2 non-trivial. If x = 0, then we have(
1− ce2πitω

)
f(t) = 0

which implies that f = 0 a.e.: a contradiction. Therefore, x ̸= 0 and

|f(t)|2 = |c|2 |f(t− x)|2 .

If |c| ≠ 1, then iterating the above equality shows that

|f(t)|2 = |c|2n |f(t− nx)|2 ,

which implies that f = 0: a contradiction. Therefore, |c| = 1 and |f |2 is periodic
as well as integrable. Hence, f = 0 which is our final contradiction.

Another case in which the HRT conjecture is easily proven is when the
(λj)

n
j=1 lie on a vertical line. To show this, we consider the following lemma.

Lemma 3 ([4, Lemma 2.1 on p. 605]). Let (zj)
n
j=1 ∈ C and (cj)

n
j=1 ∈ C not all

zero. Define

ψ(t) :=

n∑
j=1

cje
zjt, t ∈ R.

Then, ψ extends to a non-trivial entire function on C and therefore vanishes at
most countably often.

Proof. The extension is

Ψ(z) :=

n∑
j=1

cje
zjz, z ∈ C,

which is a well-defined non-trivial entire function. Therefore, ψ vanishes at most
countably often1

Proposition 4. The HRT conjecture holds when the (λj)
n
j=1 ∈ R2 lie on a

vertical line.

Proof. Let us write λj = (xj , ωj) for j ∈ [n]. We may then without loss of
generality assume that xj = 0: indeed, note that

n∑
j=1

cjπ(xj ,ωj)f = 0 ⇐⇒ π(−x1,0)

n∑
j=1

cjπ(xj ,ωj)f = 0.

The latter can be expressed as

n∑
j=1

cj
(
π(−x1,0) ◦ π(xj ,ωj)

)
f =

n∑
j=1

cje
πix1ωjπ(xj−x1,ωj)f

=

n∑
j=1

cje
πix1ωjπ(0,ωj)f = 0.

1This is well-known in complex analysis: suppose by contradiction that ψ vanishes on
an uncountable set and let us consider open balls (Bn)n∈N ⊂ C. Then, some Bn contains
uncountably many zeroes of ψ (because, if not, then the zeroes of ψ form a countable sequence).
By the Bolzano–Weierstrass theorem the zeroes in Bn have a limit point. Therefore, the
identity theorem implies that ψ = 0 which is the desired contradiction.
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So, if (π(0,ωj)f)
n
j=1 is linearly independent, then cje

πix1ωj = 0 which implies
cj = 0 for j ∈ [n] and thus (π(xj ,ωj)f)

n
j=1 is linearly independent.

Now, consider

n∑
j=1

cjπ(0,ωj)f(t) =

n∑
j=1

cje
2πitωjf(t) = 0.

By the prior lemma, we have that

ψ(t) :=

n∑
j=1

cje
2πitωj , t ∈ R,

either has countably many zeroes or that cj = 0 for all j ∈ [n]. The former
cannot be true, however, since then ψf = 0 implies that f = 0 almost every-
where.

Remark 5. Some readers may now note that the case in which the (λj)
n
j=1 lie

on a general line follows from an application of the fractional Fourier transform.
We will present a similar but slightly more general argument after introducing
the Fock space.

2 The Fock space

The Bargmann transform of a function f ∈ L2(R) is

Bf(z) := 21/4
∫

R
f(t)e2πtz−πt

2−π
2 z

2

dt, z ∈ C.

The Fock space F2(C) is the Hilbert space of all entire functions F for which
the norm

∥F∥F :=

(∫
C
|F (z)| e−π|z|

2

dz

)1/2

is finite. The inner product on F2(C) is

⟨F,G⟩F :=

∫
C
F (z)G(z)e−π|z|

2

dz.

Theorem 6 ([1, Theorem 3.4.3 on p. 56]). The Bargmann transform is a unitary
operator from L2(R) onto F2(C).

Therefore, the Bargmann transform identifies square-integrable signals with
entire functions of certain growth (at infinity) and vice versa. Specifically, we
can consider the monomials

En(z) :=

√
πn

n!
· zn, z ∈ C,

for n ∈ N0 which form an orthonormal basis for the Fock space [1, Theorem 3.4.2
on p. 54]. If we take their inverse Bargmann transform, we obtain the Hermite
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functions hn = B−1En ∈ L2(R) which must also form an orthonormal basis for
L2(R). The expansion of the Bargmann transform into these bases then is

Bf =

∞∑
n=0

⟨f, hn⟩En.

Using the definition of the Bargmann transform, we may note that it turns
a time-frequency shift into

ΠµF (z) := eπµz−
π
2 |µ|2F (z − µ), µ ∈ C.

More precisely, we have

B ◦ π(x,ω) = Πx+iω ◦ B.

Finally, let D ⊂ C denote the closed unit disk and define the contraction Cτ :
F2(C) → F2(C) by Cτ F (z) := F (τz) for τ ∈ D. Note that Cτ is unitary if and
only if |τ | = 1. The operation cτ : L2(R) → L2(R) which corresponds to Cτ —
i.e., for which Cτ ◦B = B ◦ cτ — is given by

cτ f :=

∞∑
n=0

τn⟨f, hn⟩hn

in the Hermite basis.

3 Rotations and the HRT conjecture

In the following, we will consider τ = eiθ. Then, Cτ ◦Πµ = Πτµ ◦ Cτ such that

cτ ◦π(x,ω) = π(Re[τµ],Im[τµ]) ◦ cτ , µ = x+ iω.

Alternatively, we can introduce the rotation matrix/operator

Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
and obtain that cτ ◦π(x,ω) = πRθ(x,ω) ◦ cτ .

Lemma 7 ([4, Lemma 4.1 on p. 610]). Let (λj)
n
j=0 ∈ R2 be distinct points such

that (λj)
n
j=1 ∈ R2 lie on a line. Then, there are real numbers x0, (ωj)

n
j=1 ∈ R

and an angle θ ∈ R such that

(πλj
f)nj=0 is linearly dependent

⇐⇒ π(x0,0) cτ f, π(0,ω1) cτ f, . . . , π(0,ωn) cτ f is linearly dependent,

where τ = eiθ, for all f ∈ L2(R).

Proof. Rotate the line on which the (λj)
n
j=1 lie until it is vertical. Then, apply

a time-frequency shift to reduce to the case in which the vertical line crosses
the origin and the point that is not on the line lies on the temporal axis as in
the proof of Proposition 4.
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Now, the followinging two theorems follow.

Theorem 8 ([4, Theorem 4.2 on p. 610]). Let (λj)
n
j=0 ∈ R2 be distinct points

such that (λj)
n
j=1 ∈ R2 lie on a line, assume that x0, (ωj)

n
j=1 ∈ R are as in

Lemma 7, and let f ∈ L2(R) be non-trivial. Then, (πλj
f)nj=0 is linearly inde-

pendent if x0ωj ∈ Q for all j ∈ [n].

Proof. We assume by contradiction that (πλj
f)nj=0 are linearly dependent. Now,

Lemma 7 shows that π(x0,0) cτ f, π(0,ω1) cτ f, . . . , π(0,ωn) cτ f are linearly depen-

dent for some τ = eiθ. Thereby, there exist coefficients (cj)
n
j=0 ∈ C which are

not all zero such that

c0 cτ f(t− x0) =

 n∑
j=1

cje
2πitωj

 cτ f(t).

Let us denote fτ := cτ f for ease of notation. If c0 = 0 or x0 = 0, then fτ = 0
(and thus f = 0) following the same argument as in the proof of Proposition 4.
Therefore, c0 ̸= 0 and x0 ̸= 0 and we may assume that c0 = 1 (by scaling
appropriately).

So, using the short-hand from Lemma 3, we have fτ (t−x0) = ψ(t)fτ (t). We
may now use this formula recursively to see that

fτ (t− kx0) = ψk(t)fτ (t), ψk(t) :=

k−1∏
j=0

ψ(t− jx0),

for all k ∈ N. Interestingly, ψk(t) can be expressed as a power of itself for certain
values of k. Specifically, we can find q ∈ N such that qx0ωj ∈ Z for j ∈ [n] by
assumption. We can now see that ψ is qx0 periodic such that ψkq(t) = ψq(t)

k

which implies two things: first, we have∫ ℓqx0

−∞
|fτ (t)|2 dt =

∑
k∈N

∫ (ℓ−k+1)qx0

(ℓ−k)qx0

|fτ (t)|2 dt

=
∑
k∈N

∫ (ℓ+1)qx0

ℓqx0

|fτ (t− kqx0)|2 dt

=

∫ (ℓ+1)qx0

ℓqx0

(∑
k∈N

|ψq(t)|2k
)
|fτ (t)|2 dt

for ℓ ∈ Z if x0 > 0 which shows that |ψk(t)| < 1 for almost every t ∈ R at which
fτ (t) ̸= 0 (and a similar argument works if x0 < 0); secondly,∫

R
|fτ (t)|2 dt =

∫
R
|fτ (t− kqx0)|2 dt =

∫
R
|ψq(t)|2k |fτ (t)|2 dt,

where the latter tends to zero as k → ∞ by Lebesgue monotone convergence.
Therefore, fτ = 0 which implies f = 0 and is the desired contradiction.

Theorem 9 ([4, Theorem 4.3 on p. 611]). Consider distinct points in the time-
frequency plane parametrised by

(x0, ω0) = λ+ α0(− sin θ, cos θ) + β0(cos θ, sin θ),

(xj , ωj) = λ+ αj(− sin θ, cos θ), j ∈ [n],
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where β0 ̸= 0. Let (x0, ω0) be the result of mirroring (x0, ω0) on the line crossing
all (xj , ωj); i.e., (x0, ω0) is the result or replacing β0 by −β0 in the formula
parametrising (x0, ω0).

Assume that all the sums αj + αk for (j, k) ∈ [n]2 are distinct; i.e., that
αj + αk = αj′ + αk′ implies (j, k) = (j′, k′). Then, either

π(x0,ω0)f, . . . , π(xn,ωn)f or π(x0,ω0)f, π(x1,ω1)f, . . . , π(xn,ωn)f

is linearly independent for non-trivial f ∈ L2(R).

Proof. The reader is referred to the original source [4, pp. 611–612].
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Abstract

This talk is a continuation of a presentation with the same name last
week. By viewing the HRT conjecture from the point of view of the Fock
space, we show that it holds for a dense subset of the square-integrable sig-
nals. Thereafter, we present a characterisation of this dense subset. This
talk is based on a book chapter by Daniel W. Stroock [4] and discussions
with Fushuai Jiang.

4 The HRT conjecture holds on a dense set of
square-integrable functions

The following is an argument due to Lawrence W. Baggett: suppose that
(ΠµjF )

n
j=0 ∈ F2(C) is linearly dependent for some F ∈ F2(C) and distinct

(µj)
n
j=0 ∈ C. Then, there exist constants (cj)

n
j=0 ∈ C not all zero such that

c0Πµ0F + · · ·+ cnΠµnF = 0.

Let us get rid of all terms in which cj = 0, relable, and write

c0Πµ0
F + · · ·+ cnΠµn

F = 0

with cj ̸= 0 for j ∈ {0, . . . , n}. After a potential reordering, we may assume
that c0 = −1 and

Reµ0 ≤ Reµj and Reµ0 = Reµj =⇒ Imµ0 < Imµj ,

for j ∈ [n]. Therefore, we have

Πµ0F = c1Πµ1F + · · ·+ cnΠµnF.

Note that Π−µ0
is the inverse of Πµ0

such that

F = c1 (Π−µ0
◦Πµ1

)F + · · ·+ cn (Π−µ0
◦Πµn

)F

= c1e
−πi Im[µ1µ0]Πµ1−µ0F + · · ·+ cne

−πi Im[µnµ0]Πµn−µ0F.

By our ordering, we have that µj − µ0 = xj + iωj satisfy

xj ≥ 0 and xj = 0 =⇒ ωj > 0,

for j ∈ [n]. Therefore, we have that, for all α > 0, there exists ϵ > 0 such that,
for all j ∈ [n], ϵ ≤ αxj + ωj . We can also choose β > 0 large enough such that

2

n∑
j=1

|cj | ≤ eπβϵ.

If we set µ := β(α+ i), then we obtain

Tµ F (z) := F (z − µ) =

n∑
j=1

cje
−πi Im[µjµ0] ·Πµj−µ0

F (z − µ)

=

n∑
j=1

cje
−πi Im[µjµ0]−πµ(µj−µ0) ·Πµj−µ0

Tµ F (z).
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By construction, we have

n∑
j=1

∣∣∣cje−πµ(x+iωj)
∣∣∣ = n∑

j=1

|cj | e−πRe[µ(x+iωj)] =

n∑
j=1

|cj | e−πβ(αxj+ωj)

≤
n∑
j=1

|cj | e−πβϵ ≤
1

2
.

Therefore, ∥Tµ F∥F ≤ 1
2∥Tµ F∥F which implies F = 0 provided that Tµ F ∈

F2(C).
Let us analyse the condition Tµ F ∈ F2(C). Clearly,∫

C
|F (z − µ)|2 e−π|z|

2

dz =

∫
C
|F (z)|2 e−π|z+µ|

2

dz

= e−π|µ|
2

·
∫

C

∣∣F (z)e−πµz∣∣2 e−π|z|2 dz
such that Tµ F ∈ F2(C) if and only if z 7→ F (z)e−πµz ∈ F2(C). The latter is
true under interesting conditions.

Proposition 10. Let F ∈ F2(C) be non-trivial such that∫
C
|F (z)|p e−π|z|

2

dz <∞

for some p > 2. (We write F ∈ Fp(C).) Then, the HRT conjecture holds for
f := B−1F .

Proof. Indeed,∫
C
|F (z)eπµz|2 e−π|z|

2

dz

=

∫
C
|F (z)|2 e−

2π
p |z|2 · e2πRe[µz]e−

(p−2)π
p |z|2 dz

≤
(∫

C
|F (z)|p e−π|z|

2

dz

)2/p

·
(∫

C
e

2πp
p−2 Re[µz]e−π|z|

2

)(p−2)/p

<∞.

The proposition above can alternatively be stated in the following way.

Proposition 11. Let F ∈ F2(C) either of order ρ < 2, or of order ρ = 2 and
type τ < π/2. Then, the HRT conjecture holds for f := B−1F .

Since the complex polynomials are dense in the Fock space, the above propo-
sition immediately implies that the HRT conjecture holds for a dense set of
f ∈ L2(R).

Remark 12. We know that the HRT conjecture holds for f ∈ L2(R) whose
Bargmann transform is in H :=

⋃
p>2 Fp(C) ⊂ F2(C) (where the inclusion

follows from the fact that the constants are in Fp(C) and Hölder’s inequality).
We also know that this tells us that the HRT conjecture holds on a dense subset
of L2(R). We would be interested in saying a little bit more than that; e.g., the
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HRT conjecture holds everywhere except for (potentially) on a nowhere dense
set. Unfortunately, the derivation above does not prove this because Hc is not
nowhere dense in F2(C). We can see this by showing that H has empty interior
in F2(C). A natural follow up question is whether H is meager. We have not
been able to conclude so far.

5 Understanding the dense set better

D. W. Stroock presents the following characterisation for a function F ∈ F2(C)
whose translate by µ ∈ C is in the Fock.

Theorem 13 ([4, Theorem 6.1 on p. 615]). Let F ∈ F2(C) and set f := B−1F ∈
L2(R). Then, Tµ F ∈ F2(C) if and only if

lim inf
τ↑1

∥∥∥e−πµ(·) cτ f (· − µ

2

)∥∥∥
2
<∞. (1)

Moreover, if equation (1) holds, then e−πµ(·) Tµ/2 cτ f → e−πµ
2/4B−1 Tµ F in

L2(R) as τ ↑ 1.

Proof. The reader is referred to the original source [4, pp. 611–612].

The translation of cτ f by µ/2 is defined by extending cτ f to an analytic
function and evaluating the extension. We want to present everything from a
different point of view and try to find necessary (and sufficient) conditions for
Tµ F ∈ F2(C) that are more readily interpretable.

In order to do so, we will introduce the Gabor transform:

Gf(x, ω) := 21/4 ·
∫

R
f(t)e−π(t−x)

2

e−2πitω dt, (x, ω) ∈ R2,

for f ∈ L2(R). The Gabor transform is closely related to the Bargmann trans-
form. In particular, one can show that

Bf(x+ iω) = e−πixωGf(x,−ω)e
π
2 (x

2+ω2), (x, ω) ∈ R2.

Remember that Tµ Bf ∈ F2(C) if and only if Bf ·e−πµ(·) ∈ F2(C) which in turn
happens if and only if∫

R2

|Gf(x, ω)|2 e−2π(tx+ξω) d(x, ω) <∞, (2)

where t = Reµ and ξ = Imµ. Heuristically, the above means that we are asking
the Gabor transform to decay exponentially in time and frequency. Intuitively,
this should correspond to an exponential decay in the signal and analyticity of
the signal on a strip around R. Let us flesh this out a little bit in the following.
We will assume that t > 0 and ξ > 0. We may get similar results when t and/or
ξ are negative. However, we are not really interested in these cases because
µ = αβ + βi is in the first quadrant of the complex plane.
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Lemma 14. Let t, ξ > 0 and f ∈ L2(R). Then, Tt+iξ Bf ∈ F2(C) if and only
if f · e−πt(·) “extends” to a holomorphic function ft on the strip {z ∈ C | 0 <
Im z < ξ/2} such that∫

R
|ft(x+ iy)|2 dx ≲ 1, 0 ≤ y < ξ/2,

where the implicit constant is independent of y, and

lim
y↓0

∫
R

∣∣ft(x+ iy)− f(x)e−πtx
∣∣2 dx = 0.

Proof. We have already established that Tt+iξ Bf ∈ F2(C) is equivalent to
equation (2). Following an idea by Fushuai Jiang, we will now try to split the
integrand:∫

R2

|Gf(x, ω)|2 e−2π(tx+ξω) d(x, ω) =

∫
R

∫
R
|Gf(x, ω)|2 e−2πtx dx · e−2πξω dω.

(3)
For the inner integrand, we note that

Gf(x, ω)e−πtx =

∫
R
f(s)e−πtsφ(s− x)eπt(s−x)e−2πisω ds = Vψt

ft(x, ω),

where φ := 21/4e−π(·)
2

denotes the normalised Gaussian, and ψt := φ · eπt(·).
Moreover,

Vψf(x, ω) :=
∫

R
f(t)ψ(t− x)e−2πitω dt

is the short-time Fourier transform with window ψ. According to [1, Equa-
tion (3.5) on p. 39], we have∫

R
|Gf(x, ω)|2 e−2πtx dx =

∫
R
|Vψt

ft(x, ω)|2 dx =

∫
R

∣∣∣(f̂t · Tω ψ̂t)̂(−x)∣∣∣2 dx

=

∫
R

∣∣∣f̂t(x)∣∣∣2 · ∣∣∣Tω ψ̂t(x)∣∣∣2 dx,

and the splitting is becoming apparent. We can compute the Fourier transform
of ψt explicitly and obtain

ψ̂t(ξ) = e
π
4 t

2

e−πiξt · φ(ξ), ξ ∈ R.

Plugging all of this back into equation (3), we obtain∫
R2

|Gf(x, ω)|2 e−2π(tx+ξω) d(x, ω)

=

∫
R

∫
R

∣∣∣f̂t(x)∣∣∣2 · eπ
2 t

2

|φ(x− ω)|2 dx · e−2πξω dω

= e
π
2 t

2

·
∫

R2

∣∣∣f̂t(x)∣∣∣2 e−2πξx · |φ(x− ω)|2 e2πξ(x−ω) d(x, ω)

= e
π
2 t

2

·
∫

R

∣∣∣f̂t(x)∣∣∣2 e−2πξx ·
∫

R
|φ(ν)|2 e2πξν dν dx

= e
π
2 (t

2+ξ2) ·
∫

R

∣∣∣f̂t(x)e−πξx∣∣∣2 dx.

The lemma follows from the Paley–Wiener theorem (cf. Appendix A).
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Remark 15. We suspect that introducing the Gabor transform is not actually
necessary and that all of this could also have been explained in terms of the
Bargmann transform.

A The Paley–Wiener theorems

We prove the following theorem (to make sure that all the constants are in the
right places):

Theorem 16. Let a > 0 and f ∈ L2(R). Then, the following conditions are
equivalent:

1. There exists a holomorphic function F : {z ∈ C | 0 < Im z < a} → C
satisfying

sup
0<y<a

∫
R
|F (x+ iy)|2 dx <∞

and

lim
y↓0

∫
R
|F (x+ iy)− f(x)|2 dx = 0.

2. f̂ · e−2πa(·) ∈ L2(R).

Proof. We will first prove that item 2 implies item 1: let

F (x+ iy) :=

∫
R
f̂(ξ)e−2πyξ · e2πixξ dξ =

∫
R
f̂(ξ)e2πi(x+iy)ξ dξ x+ iy ∈ C,

be the inverse Fourier transform of f̂ · e−2πy(·). Then, F is a well-defined holo-
morphic function on the strip {z ∈ C | 0 < Im z < a} and Plancherel’s theorem
implies that

sup
|y|<a

∫
R
|F (x+ iy)|2 dx = sup

|y|<a

∫
R
|f̂(ξ)|2e−4πyξ dξ ≤ ∥f∥22 + ∥f̂ · e−2πa(·)∥22

as well as

lim
y↓0

∫
R
|F (x+ iy)− f(x)|2 dx = lim

y↓0

∫
R
|f̂(ξ)|2 · |e−2πyξ − 1|2 dx = 0.

Next, we show that item 1 implies item 2. Consider ψ ∈ C∞
c (R) such that

0 ≤ ψ ≤ 1, ψ|B1 = 1 as well as ψ|Bc
2
= 0, and define

ϕ̂n(ξ) := ψ

(
ξ

n

)
, ξ ∈ R,

as well as the holomorphic functions

Gn(z) :=

∫
R
ϕn(t)F (z − t) dt, Im z ∈ (0, a),

for n ∈ N. Denote furthermore gn,y(x) := Gn(x + iy) and fy(x) := F (x + iy)

for x ∈ R and y ∈ (0, a). Then, ĝn,y = ϕ̂n · f̂y shows that ĝn,y is compactly
supported. Therefore, ∫

R
ĝn,y(ξ)e

2πyξe2πizξ dξ
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is a holomorphic function and∫
R
ĝn,y(ξ)e

2πyξe2πi(x+iy)ξ dξ =

∫
R
ĝn,y(ξ)e

2πixξ dξ = gn,y(x) = Gn(x+ iy)

implies that

Gn(z) =

∫
R
ĝn,y(ξ)e

2πyξe2πizξ dξ, Im z ∈ (0, a),

by the identity theorem of complex analysis. Since the above is true for all
y ∈ (0, a), we conclude that∫

R
ĝn,y(ξ)e

2πyξe2πizξ dξ =

∫
R
ĝn,ϵ(ξ)e

2πϵξe2πizξ dξ

for ϵ ∈ (0, a) which implies that

ĝn,y(ξ)e
2πyξ = ĝn,ϵ(ξ)e

2πϵξ, ξ ∈ R, (4)

by the Fourier inversion theorem. Now, let us introduce gn := ϕn ∗ f and note
that∥∥∥ĝn − ĝn,ye

2πy(·)
∥∥∥
2

≤ ∥ĝn − ĝn,ϵ∥2 +
∥∥∥ĝn,ϵ (1− e2πϵ(·)

)∥∥∥
2
+
∥∥∥ĝn,ϵe2πϵ(·) − ĝn,ye

2πy(·)
∥∥∥
2
.

For the first term, we have that

∥ĝn − ĝn,ϵ∥2 = ∥gn − gn,ϵ∥2 = ∥ϕn ∗ f − ϕn ∗ fϵ∥2 ≤ ∥ϕn∥1 · ∥f − fϵ∥2

which goes to zero as ϵ ↓ 0 once we show that ϕn ∈ L1(R). For the latter, just
note that the Fourier transform of ϕn is ψ(·/n) which is a smooth compactly
supported function. For the second term, we can bound 1 − e2πϵ(·) uniformly
and independently on ϵ ∈ (0, a) on the support of of ĝn,ϵ and note that the latter

is pointwise bounded by f̂ϵ whose L
2-norm can be bounded independently on ϵ

as well. Therefore, Lebesgue’s dominated convergence implies that

lim
ϵ↓0

∥∥∥ĝn,ϵ (1− e2πϵ(·)
)∥∥∥

2
= 0.

Finally, the third term is zero by equation (4) which implies that

ĝn(ξ) = ĝn,y(ξ)e
2πyξ, ξ ∈ R.

By construction, f̂ agrees with ĝn on Bn and the same is true for fy and gn,y.
Since n ∈ N was arbitrary, it follows that

f̂(ξ) = f̂y(ξ)e
2πyξ, ξ ∈ R.

Therefore, we conclude that f̂ · e−2πy(·) ∈ L2(R) for all y ∈ (0, a) with uniform
bound on the L2-norm, which implies item 2.

Remark 17. The proof is inspired by [3, Section 7.1 in Chapter VI on pp. 188-
189].
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