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Abstract

A problem posed by H. Feichtinger (and subsequently by C. Heil and D. Larson) asks whether a
positive-definite integral operator with M1 kernel admits a rank-one decomposition series that is also
strongly square-summable in M1. In this note, we approach this problem by considering its matrix
(and finite-dimensional) variant and analyzing several functionals that measure the optimality of such
decomposition. Some of the results are based on the joint work with Radu Balan.

Let X,Y be Banach spaces and let x∗ ∈ X∗, y ∈ Y , we write yx∗ = x∗ ⊗ y : X → Y to denote the
rank-one operator specified by yx∗(z) = x∗(z)y. We define ∥z∥p := (

∑n
k=1 |z(k)|

p
)1/p for z ∈ Rn or Cn with

the usual modification for p = ∞. We use ℓnp to denote Rn or Cn with ∥·∥p.

1 The Main Problem
Problem 1.1 (Feichtinger ’04, Heil-Larson ’06). Given a positive semidefinite trace-class operator

T : L2(Rd) → L2(Rd), f 7→
∫
Rd

k(x, y)f(y)dy

with k ∈ M1(R2d), can we find (gk)k∈N such that the operator-norm convergent series

T =
∑
k∈N

gkg
∗
k satisfies

∑
k∈N

∥gk∥2M1(Rd) < ∞?

Here, M1(Rd) is the L1-modulation space, also called the Feichtinger algebra, and is normed by

∥f∥M1(Rd) :=

∫
R2d

|Vgf(τ, ω)| dτdω

where Vg is the windowed Fourier transform against a Gaussian window g(x) = exp(−π |x|2), Vgf(τ, ω) :=∫
Rd e

−2πIω·xf(x)g(x− τ)dx.
By choosing a suitable ONB associated with M1(Rd) (see [3]), the problem above is equivalent to the

following.

Problem 1.2 (Heil-Larson ’06). Let E = {en}n∈N be an orthonormal basis for a Hilbert space H. Let
(cmn) ∈ ℓ1(N2) such that cmn = cmn for all m,n ∈ N. Define T : H → H by T =

∑
m,n∈N cmne

∗
m ⊗ en,

convergent in both in strong operator topology and absolutely in trace-class topology. Can we find

hk ∈ H1 :=

{
h ∈ H : ∥h∥1 :=

∞∑
n=1

|⟨h, en⟩| < ∞

}
⊂dense H

such that T =
∑∞

k=1 h
∗
k ⊗ hk (in suitable topology) and

(1.1)
∞∑
k=1

∥hk∥21 =

∞∑
k=1

( ∞∑
n=1

|⟨h, en⟩|

)2

< ∞.
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We will see that
∑

∥hk∥21 < ∞ guarantees convergence in operator norm topology.

Proposition 1.1 ([1]). For H = ℓ2 and ek = δk, H = ℓ1.

Therefore, we can state an even simpler version of the problem.

Problem 1.3. Let T : ℓ2 → ℓ2 be a Hermitian positive operator with
∑

kl |⟨δk, T δl⟩| < ∞ (hence trace-class).
Can we find hk ∈ ℓ1 such that T =

∑
k hkh

∗
k and

∑
k ∥hk∥21 < ∞?

We now consider a finite-dimensional variant. Let Symn(C) denote the space of Hermitian n×n matrices.
For A ∈ Symn, we define

∥A∥1,1 =

n∑
k,l=1

|Akl| .

Let PSDn(C) denote the cone of positive semidefinite matrices. For A ∈ PSDn, define

γ+(A) := inf

{
N∑

k=1

∥zk∥21 : A =
N∑

k=1

zkz
∗
k

}
.

Problem 1.4. Is there a universal constant C0 > 0 such that

γ+(A) ≤ C0 ∥A∥1,1?

Theorem 1.1. If Problem 1.3 is answered in the positive, then Problem 1.4 is answered in the positive.

Proof. We will prove the contrapositive statement. Let An ∈ PSDϕ(n)(C) be a sequence of matrices such
that ∥An∥1,1 = 1 but γ+(An) ≥ n ∥An∥1,1. Consider an infinite block-diagonal matrix defined by A :=⊕∞

n=1 n
−2An. The associated operator A : ℓ2 → ℓ2 then satisfies the assumption of Problem 1.3

For n ∈ N, let Pn denote the orthogonal projection from ℓ2 to the range of An, Pn = P ∗
n . We may then

write

A =

∞∑
m,n=1

PmAPn =

∞∑
m,n=1

δmnPmAPn =

∞∑
n=1

PnAPn,

convergent in the strong operator topology.
Let (hk) ⊂ ℓ1 be any decomposition of A =

∑
k hkh

∗
k. Then

A =

∞∑
n=1

Pn

( ∞∑
k=1

hkh
∗
k

)
Pn =

∞∑
n,k=1

(Pnhk)(Pnhk)
∗

and

n−2An =

∞∑
k=1

(Pnhk)(Pnhk)
∗.

Note that
∞∑

n=1

∥Pnhk∥21 =

∞∑
n=1

∞∑
i,j=1

|(Pnhk)(i)| |(Pnhk)(i)| ≤
∞∑

i,j=1

|hk(i)| |hk(j)| = ∥hk∥21 .

As a consequence,

(1.2)
∞∑
k=1

∥hk∥21 ≥
∞∑

n,k=1

∥Pnhk∥21 ≥
∞∑

n=1

1

n2
γ+(An) ≥

∞∑
n=1

1

n
= ∞.

Problem 1.5. Are Problems 1.4 and 1.3 equivalent?

2



2 Some operator theory
Let A ∈ Mn(C) , A =

[
Col1A| · · · |ColnA

]
. For 1 ≤ p, q < ∞, define

(2.1) ∥A∥p,q =

(
n∑

k=1

∥ColkA∥qp

)1/q

with suitable modification for ℓn∞. We also think of A : ℓnq → ℓnp , and define the operator norm

∥A∥q→p := sup
∥z∥q≤1

∥Az∥p .

Proposition 2.1. Let 1 ≤ p ≤ q ≤ ∞, 1/p+ 1/q = 1, and A ∈ Mn(C). The following hold.

(A) ∥A∥q→p ≤ ∥A∥p,p.

(B) ∥A∥q→p ≤ ∥A∥∞→1.

As a consequence, γ+(A) ≥ ∥A∥1,1 ≥ ∥A∥∞→1 ≥ ∥A∥q→p.

Proof. For the first statement, let z ∈ ℓq. Then

∥Az∥p =

(
n∑

k=1

|Colk(A∗) · z|p
)1/p

≤

(
n∑

k=1

∥ColkA∗∥pp ∥z∥
p
q

)1/p

= ∥A∥p,p ∥z∥q .

Note that given z ∈ Cn, ∥z∥q ≥ ∥z∥∞ and ∥z∥1 ≥ ∥z∥p, so

∥A∥q→p = inf
∥z∥q≤1

∥Az∥p ≤ inf
∥z∥∞≤1

∥Az∥1 = ∥A∥∞→1 .

Incidentally, we have the following.

Theorem 2.1 (Gluskin-Tanny ’20). Let A ∈ PSDn(R). Then

(2.2) ∥A∥1,1 ≤ 3κG(rkA)1/2 ∥A∥∞→1 .

The dependence on (rkA)1/2 is sharp, with A =

[
Ok×k 0
0 0

]
where O ∈ O(k) satisfies |Okl| ≲ k−1/2.

Definition 2.1. Let X and Y be Banach spaces. An operator A : X → Y is p-nuclear if there are sequences
(x∗

k) ⊂ BX∗ , (yk) ⊂ BY , and (λk) ∈ ℓp, such that

(2.3) A =

∞∑
k=1

λkx
∗
k ⊗ yk

where the series is convergent in the L(X,Y ) topology. Moreover,

(2.4) γp(A) := inf ∥λ∥p .

We use Np(X,Y ) to denote the Banach space of nuclear operators from X to Y with norm γp = νp. When
p = 1, we drop the 1 in all the notation.

We mostly care about the case X = ℓn∞, Y = ℓn1 , and p = 1. In this case, (ℓn∞)∗ = ℓn1 . In the infinite-
dimensional case, we use X = c0 ⊂ ℓ∞, so X∗ = ℓ1.

3



Remark 2.1. Some facts:

• From construction, regardless of the Banach spaces X and Y and the moment 1 ≤ p < ∞, every
operator in Np(X,Y ) is the γp-limit of finite-rank operators, and so is compact.

• Let H1 and H2 be Hilbert spaces, then N2(H1, H2) = S2(H1, H2) isometrically. The latter consists of
2-Schatten operators or Hilbert-Schmidt operators, with norm ∥A∥2S2

=
∑

k ∥Aek∥2H2
.

Proposition 2.2 (Lemma 2.7 in [2]). Let A ∈ Mn(C), viewed as an operator from ℓn∞ → ℓn1 . Then
γ(A) = ∥A∥1,1.

Proof. Fix A ∈ Mn(C). To show γ ≤ ∥·∥1,1, we can write

A =
[
Col1(A)| · · · |Coln(A)

]
=

n∑
k=1

δ∗k ⊗ Colk(A).

Therefore,

γ(A) ≤
n∑

k=1

∥Colk(A)∥1 ∥δk∥ℓ1 =
n∑

k=1

∥Colk(A)∥1 = ∥A∥1,1 .

For the other direction, let ϵ > 0, and let (xk), (yk) ⊂ ℓn1 with ∥xk∥1 , ∥yk∥1 ≤ 1, and λ ∈ ℓ1, such that
A =

∑
k λkxky

∗
k and ∥λ∥1 ≤ γ(A) + ϵ. Then

∥A∥1,1 =

∥∥∥∥∥∑
k

λkxky
∗
k

∥∥∥∥∥
1,1

≤
∑
k

|λk| ∥xky
∗
k∥1,1 ≤

∑
k

|λk| ∥xk∥1 ∥yk∥1 ≤ γ(A) + ϵ.

3 Preliminary properties for γ+

Proposition 3.1. γ+ is sub-additive and positive-homogeneous on PSDn.

Proof. Let A,B ∈ PSDn, and let (zk), (wk) ⊂ ℓn1 satisfies∑
k

∥zk∥21 ≤ γ+(A) + ϵ and
∑
k

∥wk∥21 ≤ γ+(B) + ϵ.

Concatenate and re-index zk and wk to form (xk) ⊂ ℓn1 , so A+B =
∑

xkx
∗
k. Moreover,

γ+(A+B) ≤
∑
k

∥xk∥21 =
∑
k

∥zk∥21 +
∑
k

∥wk∥21 ≤ γ+(A) + γ+(B) + 2ϵ.

Positive homogeneity is proved similarly.

Definition 3.1. Let u : X → X be a finite rank operator. Then we can write u =
∑N

k=1 x
∗
k⊗x̃k, x∗

k ∈ X∗ and
x̃k ∈ X. We can define the trace of u to be tr(u) =

∑
k x

∗
k(x̃k). This definition is invariant of representation.

Proposition 3.2. Given A ∈ PSDn, we have γ(A) ≤ γ+(A) ≤ ntr(A) ≤ n ∥A∥1,1 = nγ(A).

Proof. The only nontrivial inequality is γ+(A) ≤ ntr(A). Fix A ∈ PSDn(C) and let (zk)
N
k=1 be any factor-

ization A =
∑

k zkz
∗
k. Since

∥zk∥1 = ∥zk · 1n∥1 ≤ ∥1n∥2 ∥zk∥2 =
√
n ∥zk∥2 ,

we have
γ+(A) ≤

∑
k

∥zk∥21 ≤ n
∑
k

∥zk∥22 = n
∑
k

z∗k(zk) = ntr(A).
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Proposition 3.3. Given A ∈ PSDn, we have γ+(A) ≤ rank(A)n1/2 ∥A∥2→1 ≤ rank(A)n1/2 ∥A∥∞→1 ≤
rank(A)n1/2 ∥A∥1,1.

Proof. Let A =
∑r

k zkz
∗
k be the spectral factorization, r = rank(A), and Azk = λkzk with λk > 0. Let

ek = λ
−1/2
k zk. Then

λk ∥zk∥1 = ∥Azk∥1 ≤ ∥A∥2→1 ∥zk∥2 .

Rearrange, we see that
∥zk∥1 ≤ ∥A∥2→1 λ

−1/2
k ∥ek∥2 = ∥A∥2→1 λ

−1/2
k .

For the other copy of ∥zk∥1, use Hölder’s inequality again to get ∥zk∥1 ≤
√
n ∥zk∥2. Therefore,

γ+(A) ≤
r∑

k=1

∥zk∥21 ≤
√
n ∥A∥2→1

r∑
k=1

∥ek∥22 =
√
n ∥A∥2→1 tr

(
r∑

k=1

eke
∗
k

)
= rk(A)

√
n ∥A∥2→1 ≤ rk(A)

√
n ∥A∥1,1 .

4 Duality
Let Sn

1 denote the unit sphere in ℓn1 . Let M(Sn
1 ) denote the cone of positive Borel measures on Sn

1 , and let
M±(S

n
1 ) denote the space of signed Borel measures on Sn

1 . By the Riesz-Markov-Kakutani representation
theorem,

C(Sn
1 )

∗ ∼= M±(S
n
1 ).

We also have the duality of the positive cones

C+(S
n
1 )

∗ ∼= M(Sn
1 ).

Theorem 4.1 (R. Balan). For any A ∈ PSDn(C),

γ+(A) = inf

{∫
Sn
1

dµ : A =

∫
Sn
1

zz∗dµ, µ ∈ M(Sn
1 )

}

Consider the dual pairs (M±(S
n
1 ), C(Sn

1 )) and (Symn(C),Symn(C)), where the bilinear forms are given
by the natural duality pairing, so that we equip M± with the weak star topology, C(Sn

1 ) with the weak
topology, and Symn(C) with the Euclidean topology.

Consider the map

Φ : M±(S
n
1 ) → Symn(C) µ 7→ Φ(µ) =

∫
Sn
1

zz∗dµ.

The adjoint of Φ (with respect to the duality pairing) is given by

Φ∗ : Symn(C) → C(Sn
1 ) T 7→ Φ∗(T )(z) = tr(T · zz∗) = ⟨z, Tz⟩.

By linear duality theory, the following functional on PSDn(C)

δ+(A) := sup {tr(AT ) : T ∈ Symn(C) and ⟨z, Tz⟩ ≤ 1∀z ∈ Sn
1 }

is the dual linear program of that associated with γ+.

Theorem 4.2. For all A ∈ PSDn(C), δ+(A) = γ+(A).

One direction is simple.
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Lemma 4.1. δ+ ≤ γ+.

Proof. Fix A ∈ PSDn and let ϵ > 0. Let A =
∑N

k=1 zkz
∗
k be a decomposition such that

∑
k ∥zk∥

2
1 ≤ γ+(A)+ϵ.

Note that for any T = T ∗ with ⟨z, Tz⟩ ≤ 1 for all z ∈ Sn
1 ,

tr(AT ) = tr

(∑
k

zkz
∗
k ◦ T

)
=
∑
k

⟨zk, T zk⟩ =
∑
k

∥zk∥21 ⟨
zk

∥zk∥1
,
T zk
∥zk∥1

⟩ ≤
∑
k

∥zk∥21 ≤ γ+(A) + ϵ.

Theorem 4.3 (Hahn-Banach Separation Theorem). Let V be a topological vector space over R and let
K,L ⊂ V be disjoint convex subsets of V with L compact. Then there exists a bounded linear functional
ϕ ∈ V ∗ and a real number α such that

ϕ(x) ≤ α < ϕ(y) for all x ∈ K, y ∈ L.

For the reverse direction, consider the convex body

K = {(Φ(µ), ⟨µ, 1⟩+ r) : µ ∈ M(Sn
1 ), r ≥ 0} ⊂ Symn(C)× R

equipped with the induced topology.

Lemma 4.2. Let A ∈ PSDn(C). Suppose δ+(A) = M , then (A,M) ∈ K.

Proof. Suppose towards a contradiction, that (A,M) /∈ K. Then (A,M) is separated from K by a hyperplane,
i.e., there exists some (T0, λ) ∈ Symn(C)× R such that

⟨(A,M), (T0, λ)⟩ < ⟨K, T0⟩.

More explicitly,

(4.1) tr(AT0) + λM < tr

(
T0 ·

∫
Sn
1

zz∗dµ

)
+ λ

∫
Sn
1

dµ+ λr for all µ ∈ M(Sn
1 ) and r ≥ 0.

By setting µ = 0 and r = 0, we see that

(4.2) tr(AT0) + λM < 0.

Note that we must also have

(4.3) tr

(
T0 ·

∫
Sn
1

zz∗dµ

)
+ λ

∫
Sn
1

dµ+ λr ≥ 0 for all µ ∈ M(Sn
1 ) and r ≥ 0.

By setting r = 0 in (4.3) and let µ range over all possible Borel measures, we have

(4.4) Φ∗(T )(z) = ⟨z, T0z⟩ ≥ −λ for all z ∈ Sn
1 .

By setting µ = 0 in (4.3), we have
λ ≥ 0.

• Suppose λ > 0. Then −λ−1T0 ∈ Symn(C) and ⟨z,−λ−1T0z⟩ = −λ−1⟨z, T0z⟩ ≤ 1 by (4.4). Therefore,
−λ−1T0 is feasible for δ+. By (4.2),

tr(A(−λ−1T0)) > M,

contradicting M being the supremum.
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• Suppose λ = 0. Let T̃ ∈ Symn(C) with ⟨z, Tz⟩ ≤ 1 for all z ∈ Sn
1 . It is clear that T̃ − αT0 ∈ Symn(C)

for all α ≥ 0. Since Φ(T0)(z) ≥ 0 for all z ∈ Sn
1 , we have ⟨z, (T̃ − αT )z⟩ ≤ 1 for all z ∈ Sn

1 and α ≥ 0.
Therefore, T̃ − αT0 is feasible for δ+ for all α ≥ 0.

Since tr(A(T̃ − αT0)) ≤ δ+(A) = M < ∞, we must have tr(AT0) ≥ 0. This contradicts (4.2).

In either case, we arrive at a contradiction. Therefore, (A,M) ∈ K.

Lemma 4.3. K is closed.

Proof. Let (Aj ,Mj)j be a sequence in K converging to (A,M) ∈ Symn(C) × R. By definition, there exists
a sequence µj ∈ M(Sn

1 ) and rj = Mj −
∫
Sn
1
dµj ∈ R, such that Aj =

∫
Sn
1
zz∗dµj . We may, without loss of

generality, assume that
∫
Sn
1
dµj ≤ 100M . By weak-star compactness, we can replace µj by a subsequence,

such that µj → µ ∈ M(Sn
1 ) in the weak-star topology. Integrate against zz∗, we have

∫
Sn
1
zz∗dµ = A.

Integrate against the constant function 1, we have M =
∫
Sn
1
dµ + limj rj . Since rj ≥ 0, limj rj ≥ 0.

Therefore, (A,M) ∈ K.
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