Square-summable rank-one decomposition of nuclear operators

Fushuai Jiang

Abstract

A problem posed by H. Feichtinger (and subsequently by C. Heil and D. Larson) asks whether a positive-definite integral operator with M_{1} kernel admits a rank-one decomposition series that is also strongly square-summable in M_{1}. In this note, we approach this problem by considering its matrix (and finite-dimensional) variant and analyzing several functionals that measure the optimality of such decomposition. Some of the results are based on the joint work with Radu Balan.

Let X, Y be Banach spaces and let $x^{*} \in X^{*}, y \in Y$, we write $y x^{*}=x^{*} \otimes y: X \rightarrow Y$ to denote the rank-one operator specified by $y x^{*}(z)=x^{*}(z) y$. We define $\|z\|_{p}:=\left(\sum_{k=1}^{n}|z(k)|^{p}\right)^{1 / p}$ for $z \in \mathbb{R}^{n}$ or \mathbb{C}^{n} with the usual modification for $p=\infty$. We use ℓ_{p}^{n} to denote \mathbb{R}^{n} or \mathbb{C}^{n} with $\|\cdot\|_{p}$.

1 The Main Problem

Problem 1.1 (Feichtinger '04, Heil-Larson '06). Given a positive semidefinite trace-class operator

$$
T: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right), \quad f \mapsto \int_{\mathbb{R}^{d}} k(x, y) f(y) d y
$$

with $k \in M_{1}\left(\mathbb{R}^{2 d}\right)$, can we find $\left(g_{k}\right)_{k \in \mathbb{N}}$ such that the operator-norm convergent series

$$
T=\sum_{k \in \mathbb{N}} g_{k} g_{k}^{*} \text { satisfies } \quad \sum_{k \in \mathbb{N}}\left\|g_{k}\right\|_{M_{1}\left(\mathbb{R}^{d}\right)}^{2}<\infty ?
$$

Here, $M_{1}\left(\mathbb{R}^{d}\right)$ is the L_{1}-modulation space, also called the Feichtinger algebra, and is normed by

$$
\|f\|_{M_{1}\left(\mathbb{R}^{d}\right)}:=\int_{\mathbb{R}^{2 d}}\left|V_{g} f(\tau, \omega)\right| d \tau d \omega
$$

where V_{g} is the windowed Fourier transform against a Gaussian window $g(x)=\exp \left(-\pi|x|^{2}\right), V_{g} f(\tau, \omega):=$ $\int_{\mathbb{R}^{d}} e^{-2 \pi I \omega \cdot x} f(x) g(x-\tau) d x$.

By choosing a suitable ONB associated with $M_{1}\left(\mathbb{R}^{d}\right)$ (see [3]), the problem above is equivalent to the following.
Problem 1.2 (Heil-Larson '06). Let $\mathcal{E}=\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal basis for a Hilbert space \mathcal{H}. Let $\left(c_{m n}\right) \in \ell_{1}\left(\mathbb{N}^{2}\right)$ such that $c_{m n}=\overline{c_{m n}}$ for all $m, n \in \mathbb{N}$. Define $T: \mathcal{H} \rightarrow \mathcal{H}$ by $T=\sum_{m, n \in \mathbb{N}} c_{m n} e_{m}^{*} \otimes e_{n}$, convergent in both in strong operator topology and absolutely in trace-class topology. Can we find

$$
h_{k} \in \mathcal{H}_{1}:=\left\{h \in \mathcal{H}:\|h\|_{1}:=\sum_{n=1}^{\infty}\left|\left\langle h, e_{n}\right\rangle\right|<\infty\right\} \subset_{\text {dense }} \mathcal{H}
$$

such that $T=\sum_{k=1}^{\infty} h_{k}^{*} \otimes h_{k}$ (in suitable topology) and

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\|h_{k}\right\|_{1}^{2}=\sum_{k=1}^{\infty}\left(\sum_{n=1}^{\infty}\left|\left\langle h, e_{n}\right\rangle\right|\right)^{2}<\infty \tag{1.1}
\end{equation*}
$$

We will see that $\sum\left\|h_{k}\right\|_{1}^{2}<\infty$ guarantees convergence in operator norm topology.
Proposition 1.1 (1). For $\mathcal{H}=\ell_{2}$ and $e_{k}=\delta_{k}, \mathcal{H}=\ell_{1}$.
Therefore, we can state an even simpler version of the problem.
Problem 1.3. Let $T: \ell_{2} \rightarrow \ell_{2}$ be a Hermitian positive operator with $\sum_{k l}\left|\left\langle\delta_{k}, T \delta_{l}\right\rangle\right|<\infty$ (hence trace-class). Can we find $h_{k} \in \ell_{1}$ such that $T=\sum_{k} h_{k} h_{k}^{*}$ and $\sum_{k}\left\|h_{k}\right\|_{1}^{2}<\infty$?

We now consider a finite-dimensional variant. Let $\operatorname{Sym}^{n}(\mathbb{C})$ denote the space of Hermitian $n \times n$ matrices. For $A \in \operatorname{Sym}^{n}$, we define

$$
\|A\|_{1,1}=\sum_{k, l=1}^{n}\left|A_{k l}\right| .
$$

Let $\operatorname{PSD}^{n}(\mathbb{C})$ denote the cone of positive semidefinite matrices. For $A \in \mathrm{PSD}^{n}$, define

$$
\gamma_{+}(A):=\inf \left\{\sum_{k=1}^{N}\left\|z_{k}\right\|_{1}^{2}: A=\sum_{k=1}^{N} z_{k} z_{k}^{*}\right\} .
$$

Problem 1.4. Is there a universal constant $C_{0}>0$ such that

$$
\gamma_{+}(A) \leq C_{0}\|A\|_{1,1} ?
$$

Theorem 1.1. If Problem 1.3 is answered in the positive, then Problem 1.4 is answered in the positive.
Proof. We will prove the contrapositive statement. Let $A_{n} \in \operatorname{PSD}^{\phi(n)}(\mathbb{C})$ be a sequence of matrices such that $\left\|A_{n}\right\|_{1,1}=1$ but $\gamma_{+}\left(A_{n}\right) \geq n\left\|A_{n}\right\|_{1,1}$. Consider an infinite block-diagonal matrix defined by $A:=$ $\bigoplus_{n=1}^{\infty} n^{-2} A_{n}$. The associated operator $A: \ell_{2} \rightarrow \ell_{2}$ then satisfies the assumption of Problem 1.3

For $n \in \mathbb{N}$, let P_{n} denote the orthogonal projection from ℓ_{2} to the range of $A_{n}, P_{n}=P_{n}^{*}$. We may then write

$$
A=\sum_{m, n=1}^{\infty} P_{m} A P_{n}=\sum_{m, n=1}^{\infty} \delta_{m n} P_{m} A P_{n}=\sum_{n=1}^{\infty} P_{n} A P_{n}
$$

convergent in the strong operator topology.
Let $\left(h_{k}\right) \subset \ell_{1}$ be any decomposition of $A=\sum_{k} h_{k} h_{k}^{*}$. Then

$$
A=\sum_{n=1}^{\infty} P_{n}\left(\sum_{k=1}^{\infty} h_{k} h_{k}^{*}\right) P_{n}=\sum_{n, k=1}^{\infty}\left(P_{n} h_{k}\right)\left(P_{n} h_{k}\right)^{*}
$$

and

$$
n^{-2} A_{n}=\sum_{k=1}^{\infty}\left(P_{n} h_{k}\right)\left(P_{n} h_{k}\right)^{*} .
$$

Note that

$$
\sum_{n=1}^{\infty}\left\|P_{n} h_{k}\right\|_{1}^{2}=\sum_{n=1}^{\infty} \sum_{i, j=1}^{\infty}\left|\left(P_{n} h_{k}\right)(i)\right|\left|\left(P_{n} h_{k}\right)(i)\right| \leq \sum_{i, j=1}^{\infty}\left|h_{k}(i)\right|\left|h_{k}(j)\right|=\left\|h_{k}\right\|_{1}^{2} .
$$

As a consequence,

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left\|h_{k}\right\|_{1}^{2} \geq \sum_{n, k=1}^{\infty}\left\|P_{n} h_{k}\right\|_{1}^{2} \geq \sum_{n=1}^{\infty} \frac{1}{n^{2}} \gamma_{+}\left(A_{n}\right) \geq \sum_{n=1}^{\infty} \frac{1}{n}=\infty . \tag{1.2}
\end{equation*}
$$

Problem 1.5. Are Problems 1.4 and 1.3 equivalent?

2 Some operator theory

Let $A \in \mathrm{M}^{n}(\mathbb{C}), A=\left[\operatorname{Col}_{1} A|\cdots| \operatorname{Col}_{n} A\right]$. For $1 \leq p, q<\infty$, define

$$
\begin{equation*}
\|A\|_{p, q}=\left(\sum_{k=1}^{n}\left\|\operatorname{Col}_{k} A\right\|_{p}^{q}\right)^{1 / q} \tag{2.1}
\end{equation*}
$$

with suitable modification for ℓ_{∞}^{n}. We also think of $A: \ell_{q}^{n} \rightarrow \ell_{p}^{n}$, and define the operator norm

$$
\|A\|_{q \rightarrow p}:=\sup _{\|z\|_{q} \leq 1}\|A z\|_{p}
$$

Proposition 2.1. Let $1 \leq p \leq q \leq \infty, 1 / p+1 / q=1$, and $A \in \mathrm{M}^{n}(\mathbb{C})$. The following hold.
(A) $\|A\|_{q \rightarrow p} \leq\|A\|_{p, p}$.
(B) $\|A\|_{q \rightarrow p} \leq\|A\|_{\infty \rightarrow 1}$.

As a consequence, $\gamma_{+}(A) \geq\|A\|_{1,1} \geq\|A\|_{\infty \rightarrow 1} \geq\|A\|_{q \rightarrow p}$.
Proof. For the first statement, let $z \in \ell_{q}$. Then

$$
\|A z\|_{p}=\left(\sum_{k=1}^{n}\left|\operatorname{Col}_{k}\left(A^{*}\right) \cdot z\right|^{p}\right)^{1 / p} \leq\left(\sum_{k=1}^{n}\left\|\operatorname{Col}_{k} A^{*}\right\|_{p}^{p}\|z\|_{q}^{p}\right)^{1 / p}=\|A\|_{p, p}\|z\|_{q}
$$

Note that given $z \in \mathbb{C}^{n},\|z\|_{q} \geq\|z\|_{\infty}$ and $\|z\|_{1} \geq\|z\|_{p}$, so

$$
\|A\|_{q \rightarrow p}=\inf _{\|z\|_{q} \leq 1}\|A z\|_{p} \leq \inf _{\|z\|_{\infty} \leq 1}\|A z\|_{1}=\|A\|_{\infty \rightarrow 1}
$$

Incidentally, we have the following.
Theorem 2.1 (Gluskin-Tanny '20). Let $A \in \operatorname{PSD}^{n}(\mathbb{R})$. Then

$$
\begin{equation*}
\|A\|_{1,1} \leq 3 \kappa_{G}(\operatorname{rk} A)^{1 / 2}\|A\|_{\infty \rightarrow 1} \tag{2.2}
\end{equation*}
$$

The dependence on $(\operatorname{rk} A)^{1 / 2}$ is sharp, with $A=\left[\begin{array}{cc}O_{k \times k} & 0 \\ 0 & 0\end{array}\right]$ where $O \in \mathcal{O}(k)$ satisfies $\left|O_{k l}\right| \lesssim k^{-1 / 2}$.
Definition 2.1. Let X and Y be Banach spaces. An operator $A: X \rightarrow Y$ is p-nuclear if there are sequences $\left(x_{k}^{*}\right) \subset B_{X^{*}},\left(y_{k}\right) \subset B_{Y}$, and $\left(\lambda_{k}\right) \in \ell_{p}$, such that

$$
\begin{equation*}
A=\sum_{k=1}^{\infty} \lambda_{k} x_{k}^{*} \otimes y_{k} \tag{2.3}
\end{equation*}
$$

where the series is convergent in the $\mathcal{L}(X, Y)$ topology. Moreover,

$$
\begin{equation*}
\gamma_{p}(A):=\inf \|\lambda\|_{p} \tag{2.4}
\end{equation*}
$$

We use $\mathcal{N}_{p}(X, Y)$ to denote the Banach space of nuclear operators from X to Y with norm $\gamma_{p}=\nu_{p}$. When $p=1$, we drop the 1 in all the notation.

We mostly care about the case $X=\ell_{\infty}^{n}, Y=\ell_{1}^{n}$, and $p=1$. In this case, $\left(\ell_{\infty}^{n}\right)^{*}=\ell_{1}^{n}$. In the infinitedimensional case, we use $X=c_{0} \subset \ell_{\infty}$, so $X^{*}=\ell_{1}$.

Remark 2.1. Some facts:

- From construction, regardless of the Banach spaces X and Y and the moment $1 \leq p<\infty$, every operator in $\mathcal{N}_{p}(X, Y)$ is the γ_{p}-limit of finite-rank operators, and so is compact.
- Let H_{1} and H_{2} be Hilbert spaces, then $\mathcal{N}_{2}\left(H_{1}, H_{2}\right)=\mathcal{S}_{2}\left(H_{1}, H_{2}\right)$ isometrically. The latter consists of 2-Schatten operators or Hilbert-Schmidt operators, with norm $\|A\|_{\mathcal{S}_{2}}^{2}=\sum_{k}\left\|A e_{k}\right\|_{H_{2}}^{2}$.
Proposition 2.2 (Lemma 2.7 in [2]). Let $A \in \mathrm{M}^{n}(\mathbb{C})$, viewed as an operator from $\ell_{\infty}^{n} \rightarrow \ell_{1}^{n}$. Then $\gamma(A)=\|A\|_{1,1}$.
Proof. Fix $A \in \mathrm{M}^{n}(\mathbb{C})$. To show $\gamma \leq\|\cdot\|_{1,1}$, we can write

$$
A=\left[\operatorname{Col}_{1}(A)|\cdots| \operatorname{Col}_{n}(A)\right]=\sum_{k=1}^{n} \delta_{k}^{*} \otimes \operatorname{Col}_{k}(A)
$$

Therefore,

$$
\gamma(A) \leq \sum_{k=1}^{n}\left\|\operatorname{Col}_{k}(A)\right\|_{1}\left\|\delta_{k}\right\|_{\ell_{1}}=\sum_{k=1}^{n}\left\|\operatorname{Col}_{k}(A)\right\|_{1}=\|A\|_{1,1}
$$

For the other direction, let $\epsilon>0$, and let $\left(x_{k}\right),\left(y_{k}\right) \subset \ell_{1}^{n}$ with $\left\|x_{k}\right\|_{1},\left\|y_{k}\right\|_{1} \leq 1$, and $\lambda \in \ell_{1}$, such that $A=\sum_{k} \lambda_{k} x_{k} y_{k}^{*}$ and $\|\lambda\|_{1} \leq \gamma(A)+\epsilon$. Then

$$
\|A\|_{1,1}=\left\|\sum_{k} \lambda_{k} x_{k} y_{k}^{*}\right\|_{1,1} \leq \sum_{k}\left|\lambda_{k}\right|\left\|x_{k} y_{k}^{*}\right\|_{1,1} \leq \sum_{k}\left|\lambda_{k}\right|\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1} \leq \gamma(A)+\epsilon
$$

3 Preliminary properties for γ_{+}

Proposition 3.1. γ_{+}is sub-additive and positive-homogeneous on PSD^{n}.
Proof. Let $A, B \in \mathrm{PSD}^{n}$, and let $\left(z_{k}\right),\left(w_{k}\right) \subset \ell_{1}^{n}$ satisfies

$$
\sum_{k}\left\|z_{k}\right\|_{1}^{2} \leq \gamma_{+}(A)+\epsilon \quad \text { and } \quad \sum_{k}\left\|w_{k}\right\|_{1}^{2} \leq \gamma_{+}(B)+\epsilon
$$

Concatenate and re-index z_{k} and w_{k} to form $\left(x_{k}\right) \subset \ell_{1}^{n}$, so $A+B=\sum x_{k} x_{k}^{*}$. Moreover,

$$
\gamma_{+}(A+B) \leq \sum_{k}\left\|x_{k}\right\|_{1}^{2}=\sum_{k}\left\|z_{k}\right\|_{1}^{2}+\sum_{k}\left\|w_{k}\right\|_{1}^{2} \leq \gamma_{+}(A)+\gamma_{+}(B)+2 \epsilon
$$

Positive homogeneity is proved similarly.
Definition 3.1. Let $u: X \rightarrow X$ be a finite rank operator. Then we can write $u=\sum_{k=1}^{N} x_{k}^{*} \otimes \tilde{x}_{k}, x_{k}^{*} \in X^{*}$ and $\tilde{x}_{k} \in X$. We can define the trace of u to be $\operatorname{tr}(u)=\sum_{k} x_{k}^{*}\left(\tilde{x}_{k}\right)$. This definition is invariant of representation.
Proposition 3.2. Given $A \in \operatorname{PSD}^{n}$, we have $\gamma(A) \leq \gamma_{+}(A) \leq n \operatorname{tr}(A) \leq n\|A\|_{1,1}=n \gamma(A)$.
Proof. The only nontrivial inequality is $\gamma_{+}(A) \leq n \operatorname{tr}(A)$. Fix $A \in \operatorname{PSD}^{n}(\mathbb{C})$ and let $\left(z_{k}\right)_{k=1}^{N}$ be any factorization $A=\sum_{k} z_{k} z_{k}^{*}$. Since

$$
\left\|z_{k}\right\|_{1}=\left\|z_{k} \cdot 1_{n}\right\|_{1} \leq\left\|1_{n}\right\|_{2}\left\|z_{k}\right\|_{2}=\sqrt{n}\left\|z_{k}\right\|_{2}
$$

we have

$$
\gamma_{+}(A) \leq \sum_{k}\left\|z_{k}\right\|_{1}^{2} \leq n \sum_{k}\left\|z_{k}\right\|_{2}^{2}=n \sum_{k} z_{k}^{*}\left(z_{k}\right)=n \operatorname{tr}(A) .
$$

Proposition 3.3. Given $A \in \operatorname{PSD}^{n}$, we have $\gamma_{+}(A) \leq \operatorname{rank}(A) n^{1 / 2}\|A\|_{2 \rightarrow 1} \leq \operatorname{rank}(A) n^{1 / 2}\|A\|_{\infty \rightarrow 1} \leq$ $\operatorname{rank}(A) n^{1 / 2}\|A\|_{1,1}$.

Proof. Let $A=\sum_{k}^{r} z_{k} z_{k}^{*}$ be the spectral factorization, $r=\operatorname{rank}(A)$, and $A z_{k}=\lambda_{k} z_{k}$ with $\lambda_{k}>0$. Let $e_{k}=\lambda_{k}^{-1 / 2} z_{k}$. Then

$$
\lambda_{k}\left\|z_{k}\right\|_{1}=\left\|A z_{k}\right\|_{1} \leq\|A\|_{2 \rightarrow 1}\left\|z_{k}\right\|_{2}
$$

Rearrange, we see that

$$
\left\|z_{k}\right\|_{1} \leq\|A\|_{2 \rightarrow 1} \lambda_{k}^{-1 / 2}\left\|e_{k}\right\|_{2}=\|A\|_{2 \rightarrow 1} \lambda_{k}^{-1 / 2}
$$

For the other copy of $\left\|z_{k}\right\|_{1}$, use Hölder's inequality again to get $\left\|z_{k}\right\|_{1} \leq \sqrt{n}\left\|z_{k}\right\|_{2}$. Therefore,

$$
\begin{aligned}
\gamma_{+}(A) & \leq \sum_{k=1}^{r}\left\|z_{k}\right\|_{1}^{2} \leq \sqrt{n}\|A\|_{2 \rightarrow 1} \sum_{k=1}^{r}\left\|e_{k}\right\|_{2}^{2}=\sqrt{n}\|A\|_{2 \rightarrow 1} \operatorname{tr}\left(\sum_{k=1}^{r} e_{k} e_{k}^{*}\right) \\
& =\operatorname{rk}(A) \sqrt{n}\|A\|_{2 \rightarrow 1} \leq \operatorname{rk}(A) \sqrt{n}\|A\|_{1,1}
\end{aligned}
$$

4 Duality

Let S_{1}^{n} denote the unit sphere in ℓ_{1}^{n}. Let $\mathcal{M}\left(S_{1}^{n}\right)$ denote the cone of positive Borel measures on S_{1}^{n}, and let $\mathcal{M}_{ \pm}\left(S_{1}^{n}\right)$ denote the space of signed Borel measures on S_{1}^{n}. By the Riesz-Markov-Kakutani representation theorem,

$$
C\left(S_{1}^{n}\right)^{*} \cong \mathcal{M}_{ \pm}\left(S_{1}^{n}\right)
$$

We also have the duality of the positive cones

$$
C_{+}\left(S_{1}^{n}\right)^{*} \cong \mathcal{M}\left(S_{1}^{n}\right)
$$

Theorem 4.1 (R. Balan). For any $A \in \operatorname{PSD}^{n}(\mathbb{C})$,

$$
\gamma_{+}(A)=\inf \left\{\int_{S_{1}^{n}} d \mu: A=\int_{S_{1}^{n}} z z^{*} d \mu, \mu \in \mathcal{M}\left(S_{1}^{n}\right)\right\}
$$

Consider the dual pairs $\left(\mathcal{M}_{ \pm}\left(S_{1}^{n}\right), C\left(S_{1}^{n}\right)\right)$ and $\left(\operatorname{Sym}^{n}(\mathbb{C}), \operatorname{Sym}^{n}(\mathbb{C})\right)$, where the bilinear forms are given by the natural duality pairing, so that we equip $\mathcal{M}_{ \pm}$with the weak star topology, $C\left(S_{1}^{n}\right)$ with the weak topology, and $\operatorname{Sym}^{n}(\mathbb{C})$ with the Euclidean topology.

Consider the map

$$
\Phi: \mathcal{M}_{ \pm}\left(S_{1}^{n}\right) \rightarrow \operatorname{Sym}^{n}(\mathbb{C}) \quad \mu \mapsto \Phi(\mu)=\int_{S_{1}^{n}} z z^{*} d \mu
$$

The adjoint of Φ (with respect to the duality pairing) is given by

$$
\Phi^{*}: \operatorname{Sym}^{n}(\mathbb{C}) \rightarrow C\left(S_{1}^{n}\right) \quad T \mapsto \Phi^{*}(T)(z)=\operatorname{tr}\left(T \cdot z z^{*}\right)=\langle z, T z\rangle
$$

By linear duality theory, the following functional on $\operatorname{PSD}^{n}(\mathbb{C})$

$$
\delta_{+}(A):=\sup \left\{\operatorname{tr}(A T): T \in \operatorname{Sym}^{n}(\mathbb{C}) \text { and }\langle z, T z\rangle \leq 1 \forall z \in S_{1}^{n}\right\}
$$

is the dual linear program of that associated with γ_{+}.
Theorem 4.2. For all $A \in \operatorname{PSD}^{n}(\mathbb{C}), \delta_{+}(A)=\gamma_{+}(A)$.
One direction is simple.

Lemma 4.1. $\delta_{+} \leq \gamma_{+}$.
Proof. Fix $A \in \mathrm{PSD}^{n}$ and let $\epsilon>0$. Let $A=\sum_{k=1}^{N} z_{k} z_{k}^{*}$ be a decomposition such that $\sum_{k}\left\|z_{k}\right\|_{1}^{2} \leq \gamma_{+}(A)+\epsilon$. Note that for any $T=T^{*}$ with $\langle z, T z\rangle \leq 1$ for all $z \in S_{1}^{n}$,

$$
\operatorname{tr}(A T)=\operatorname{tr}\left(\sum_{k} z_{k} z_{k}^{*} \circ T\right)=\sum_{k}\left\langle z_{k}, T z_{k}\right\rangle=\sum_{k}\left\|z_{k}\right\|_{1}^{2}\left\langle\frac{z_{k}}{\left\|z_{k}\right\|_{1}}, \frac{T z_{k}}{\left\|z_{k}\right\|_{1}}\right\rangle \leq \sum_{k}\left\|z_{k}\right\|_{1}^{2} \leq \gamma_{+}(A)+\epsilon
$$

Theorem 4.3 (Hahn-Banach Separation Theorem). Let V be a topological vector space over \mathbb{R} and let $K, L \subset V$ be disjoint convex subsets of V with L compact. Then there exists a bounded linear functional $\phi \in V^{*}$ and a real number α such that

$$
\phi(x) \leq \alpha<\phi(y) \quad \text { for all } x \in K, y \in L
$$

For the reverse direction, consider the convex body

$$
\mathcal{K}=\left\{(\Phi(\mu),\langle\mu, 1\rangle+r): \mu \in \mathcal{M}\left(S_{1}^{n}\right), r \geq 0\right\} \subset \operatorname{Sym}^{n}(\mathbb{C}) \times \mathbb{R}
$$

equipped with the induced topology.
Lemma 4.2. Let $A \in \operatorname{PSD}^{n}(\mathbb{C})$. Suppose $\delta_{+}(A)=M$, then $(A, M) \in \overline{\mathcal{K}}$.
Proof. Suppose towards a contradiction, that $(A, M) \notin \overline{\mathcal{K}}$. Then (A, M) is separated from \mathcal{K} by a hyperplane, i.e., there exists some $\left(T_{0}, \lambda\right) \in \operatorname{Sym}^{n}(\mathbb{C}) \times \mathbb{R}$ such that

$$
\left\langle(A, M),\left(T_{0}, \lambda\right)\right\rangle<\left\langle\mathcal{K}, T_{0}\right\rangle
$$

More explicitly,

$$
\begin{equation*}
\operatorname{tr}\left(A T_{0}\right)+\lambda M<\operatorname{tr}\left(T_{0} \cdot \int_{S_{1}^{n}} z z^{*} d \mu\right)+\lambda \int_{S_{1}^{n}} d \mu+\lambda r \text { for all } \mu \in \mathcal{M}\left(S_{1}^{n}\right) \text { and } r \geq 0 \tag{4.1}
\end{equation*}
$$

By setting $\mu=0$ and $r=0$, we see that

$$
\begin{equation*}
\operatorname{tr}\left(A T_{0}\right)+\lambda M<0 \tag{4.2}
\end{equation*}
$$

Note that we must also have

$$
\begin{equation*}
\operatorname{tr}\left(T_{0} \cdot \int_{S_{1}^{n}} z z^{*} d \mu\right)+\lambda \int_{S_{1}^{n}} d \mu+\lambda r \geq 0 \quad \text { for all } \mu \in \mathcal{M}\left(S_{1}^{n}\right) \text { and } r \geq 0 \tag{4.3}
\end{equation*}
$$

By setting $r=0$ in 4.3) and let μ range over all possible Borel measures, we have

$$
\begin{equation*}
\Phi^{*}(T)(z)=\left\langle z, T_{0} z\right\rangle \geq-\lambda \quad \text { for all } z \in S_{1}^{n} \tag{4.4}
\end{equation*}
$$

By setting $\mu=0$ in 4.3, we have

$$
\lambda \geq 0
$$

- Suppose $\lambda>0$. Then $-\lambda^{-1} T_{0} \in \operatorname{Sym}^{n}(\mathbb{C})$ and $\left\langle z,-\lambda^{-1} T_{0} z\right\rangle=-\lambda^{-1}\left\langle z, T_{0} z\right\rangle \leq 1$ by 4.4. Therefore, $-\lambda^{-1} T_{0}$ is feasible for δ_{+}. By 4.2,

$$
\operatorname{tr}\left(A\left(-\lambda^{-1} T_{0}\right)\right)>M
$$

contradicting M being the supremum.

- Suppose $\lambda=0$. Let $\tilde{T} \in \operatorname{Sym}^{n}(\mathbb{C})$ with $\langle z, T z\rangle \leq 1$ for all $z \in S_{1}^{n}$. It is clear that $\tilde{T}-\alpha T_{0} \in \operatorname{Sym}^{n}(\mathbb{C})$ for all $\alpha \geq 0$. Since $\Phi\left(T_{0}\right)(z) \geq 0$ for all $z \in S_{1}^{n}$, we have $\langle z,(T-\alpha T) z\rangle \leq 1$ for all $z \in S_{1}^{n}$ and $\alpha \geq 0$. Therefore, $\tilde{T}-\alpha T_{0}$ is feasible for δ_{+}for all $\alpha \geq 0$.
Since $\operatorname{tr}\left(A\left(\tilde{T}-\alpha T_{0}\right)\right) \leq \delta_{+}(A)=M<\infty$, we must have $\operatorname{tr}\left(A T_{0}\right) \geq 0$. This contradicts 4.2).
In either case, we arrive at a contradiction. Therefore, $(A, M) \in \overline{\mathcal{K}}$.

Lemma 4.3. \mathcal{K} is closed.
Proof. Let $\left(A_{j}, M_{j}\right)_{j}$ be a sequence in \mathcal{K} converging to $(A, M) \in \operatorname{Sym}^{n}(\mathbb{C}) \times \mathbb{R}$. By definition, there exists a sequence $\mu_{j} \in \mathcal{M}\left(S_{1}^{n}\right)$ and $r_{j}=M_{j}-\int_{S_{1}^{n}} d \mu_{j} \in \mathbb{R}$, such that $A_{j}=\int_{S_{1}^{n}} z z^{*} d \mu_{j}$. We may, without loss of generality, assume that $\int_{S_{1}^{n}} d \mu_{j} \leq 100 M$. By weak-star compactness, we can replace μ_{j} by a subsequence, such that $\mu_{j} \rightarrow \mu \in \mathcal{M}\left(S_{1}^{n}\right)$ in the weak-star topology. Integrate against $z z^{*}$, we have $\int_{S_{1}^{n}} z z^{*} d \mu=A$. Integrate against the constant function 1 , we have $M=\int_{S_{1}^{n}} d \mu+\lim _{j} r_{j}$. Since $r_{j} \geq 0, \lim _{j} r_{j} \geq 0$. Therefore, $(A, M) \in \mathcal{K}$.

References

[1] Radu Balan, Kasso A. Okoudjou, and Anirudha Poria. On a problem by Hans Feichtinger. Operators and Matrices, 12(3), 2018.
[2] Radu Balan, Kasso A. Okoudjou, Michael Rawson, Yang Wang, and Rui Zhang. Optimal ℓ^{1} rank one matrix decomposition. In Harmonic Analysis and Applications, pages 21-41. Springer International Publishing, 2021.
[3] Chirstopher Heil and David Larson. Operator theory and modulation spaces. In Frames and Operator Theory in Analysis and Signal Processing, Contemporary Mathematics. American Mathematical Society, 2006.

