Square-summable rank-one decomposition of nuclear operators

Fushuai Jiang

Abstract

A problem posed by H. Feichtinger (and subsequently by C. Heil and D. Larson) asks whether a positive-definite integral operator with M_1 kernel admits a rank-one decomposition series that is also strongly square-summable in M_1 . In this note, we approach this problem by considering its matrix (and finite-dimensional) variant and analyzing several functionals that measure the optimality of such decomposition. Some of the results are based on the joint work with Radu Balan.

Let X, Y be Banach spaces and let $x^* \in X^*, y \in Y$, we write $yx^* = x^* \otimes y : X \to Y$ to denote the rank-one operator specified by $yx^*(z) = x^*(z)y$. We define $||z||_p := (\sum_{k=1}^n |z(k)|^p)^{1/p}$ for $z \in \mathbb{R}^n$ or \mathbb{C}^n with the usual modification for $p = \infty$. We use ℓ_p^n to denote \mathbb{R}^n or \mathbb{C}^n with $||\cdot||_p$.

1 The Main Problem

Problem 1.1 (Feichtinger '04, Heil-Larson '06). Given a positive semidefinite trace-class operator

$$T: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d), \quad f \mapsto \int_{\mathbb{R}^d} k(x, y) f(y) dy$$

with $k \in M_1(\mathbb{R}^{2d})$, can we find $(g_k)_{k \in \mathbb{N}}$ such that the operator-norm convergent series

$$T = \sum_{k \in \mathbb{N}} g_k g_k^* \text{ satisfies } \sum_{k \in \mathbb{N}} \|g_k\|_{M_1(\mathbb{R}^d)}^2 < \infty?$$

Here, $M_1(\mathbb{R}^d)$ is the L_1 -modulation space, also called the Feichtinger algebra, and is normed by

$$\|f\|_{M_1(\mathbb{R}^d)} := \int_{\mathbb{R}^{2d}} |V_g f(\tau, \omega)| \, d\tau d\omega$$

where V_g is the windowed Fourier transform against a Gaussian window $g(x) = \exp(-\pi |x|^2), V_g f(\tau, \omega) := \int_{\mathbb{R}^d} e^{-2\pi I \omega \cdot x} f(x) g(x-\tau) dx.$

By choosing a suitable ONB associated with $M_1(\mathbb{R}^d)$ (see [3]), the problem above is equivalent to the following.

Problem 1.2 (Heil-Larson '06). Let $\mathcal{E} = \{e_n\}_{n \in \mathbb{N}}$ be an orthonormal basis for a Hilbert space \mathcal{H} . Let $(c_{mn}) \in \ell_1(\mathbb{N}^2)$ such that $c_{mn} = \overline{c_{mn}}$ for all $m, n \in \mathbb{N}$. Define $T : \mathcal{H} \to \mathcal{H}$ by $T = \sum_{m,n \in \mathbb{N}} c_{mn} e_m^* \otimes e_n$, convergent in both in strong operator topology and absolutely in trace-class topology. Can we find

$$h_k \in \mathcal{H}_1 := \left\{ h \in \mathcal{H} : \left\| h \right\|_1 := \sum_{n=1}^{\infty} \left| \langle h, e_n \rangle \right| < \infty \right\} \subset_{dense} \mathcal{H}$$

such that $T = \sum_{k=1}^{\infty} h_k^* \otimes h_k$ (in suitable topology) and

(1.1)
$$\sum_{k=1}^{\infty} \|h_k\|_1^2 = \sum_{k=1}^{\infty} \left(\sum_{n=1}^{\infty} |\langle h, e_n \rangle|\right)^2 < \infty.$$

We will see that $\sum \|h_k\|_1^2 < \infty$ guarantees convergence in operator norm topology.

Proposition 1.1 ([1]). For $\mathcal{H} = \ell_2$ and $e_k = \delta_k$, $\mathcal{H} = \ell_1$.

Therefore, we can state an even simpler version of the problem.

Problem 1.3. Let $T : \ell_2 \to \ell_2$ be a Hermitian positive operator with $\sum_{kl} |\langle \delta_k, T \delta_l \rangle| < \infty$ (hence trace-class). Can we find $h_k \in \ell_1$ such that $T = \sum_k h_k h_k^*$ and $\sum_k \|h_k\|_1^2 < \infty$?

We now consider a finite-dimensional variant. Let $\operatorname{Sym}^{n}(\mathbb{C})$ denote the space of Hermitian $n \times n$ matrices. For $A \in \text{Sym}^n$, we define

$$||A||_{1,1} = \sum_{k,l=1}^{n} |A_{kl}|.$$

Let $\mathrm{PSD}^n(\mathbb{C})$ denote the cone of positive semidefinite matrices. For $A \in \mathrm{PSD}^n$, define

$$\gamma_+(A) := \inf \left\{ \sum_{k=1}^N \|z_k\|_1^2 : A = \sum_{k=1}^N z_k z_k^* \right\}.$$

Problem 1.4. Is there a universal constant $C_0 > 0$ such that

$$\gamma_+(A) \le C_0 \|A\|_{1,1}$$
?

Theorem 1.1. If Problem 1.3 is answered in the positive, then Problem 1.4 is answered in the positive.

Proof. We will prove the contrapositive statement. Let $A_n \in PSD^{\phi(n)}(\mathbb{C})$ be a sequence of matrices such that $\|A_n\|_{1,1} = 1$ but $\gamma_+(A_n) \ge n \|A_n\|_{1,1}$. Consider an infinite block-diagonal matrix defined by A := $\bigoplus_{n=1}^{\infty} n^{-2}A_n.$ The associated operator $A: \ell_2 \to \ell_2$ then satisfies the assumption of Problem 1.3 For $n \in \mathbb{N}$, let P_n denote the orthogonal projection from ℓ_2 to the range of A_n , $P_n = P_n^*$. We may then

write

$$A = \sum_{m,n=1}^{\infty} P_m A P_n = \sum_{m,n=1}^{\infty} \delta_{mn} P_m A P_n = \sum_{n=1}^{\infty} P_n A P_n$$

convergent in the strong operator topology.

Let $(h_k) \subset \ell_1$ be any decomposition of $A = \sum_k h_k h_k^*$. Then

$$A = \sum_{n=1}^{\infty} P_n \left(\sum_{k=1}^{\infty} h_k h_k^* \right) P_n = \sum_{n,k=1}^{\infty} (P_n h_k) (P_n h_k)^*$$

and

$$n^{-2}A_n = \sum_{k=1}^{\infty} (P_n h_k) (P_n h_k)^*.$$

Note that

$$\sum_{n=1}^{\infty} \|P_n h_k\|_1^2 = \sum_{n=1}^{\infty} \sum_{i,j=1}^{\infty} |(P_n h_k)(i)| |(P_n h_k)(i)| \le \sum_{i,j=1}^{\infty} |h_k(i)| |h_k(j)| = \|h_k\|_1^2.$$

As a consequence,

(1.2)
$$\sum_{k=1}^{\infty} \|h_k\|_1^2 \ge \sum_{n,k=1}^{\infty} \|P_n h_k\|_1^2 \ge \sum_{n=1}^{\infty} \frac{1}{n^2} \gamma_+(A_n) \ge \sum_{n=1}^{\infty} \frac{1}{n} = \infty.$$

Problem 1.5. Are Problems 1.4 and 1.3 equivalent?

2 Some operator theory

Let $A \in \mathcal{M}^n(\mathbb{C})$, $A = [\operatorname{Col}_1 A | \cdots | \operatorname{Col}_n A]$. For $1 \le p, q < \infty$, define

(2.1)
$$||A||_{p,q} = \left(\sum_{k=1}^{n} ||\mathrm{Col}_k A||_p^q\right)^{1/q}$$

with suitable modification for ℓ_{∞}^n . We also think of $A: \ell_q^n \to \ell_p^n$, and define the operator norm

$$||A||_{q \to p} := \sup_{||z||_q \le 1} ||Az||_p$$

Proposition 2.1. Let $1 \le p \le q \le \infty$, 1/p + 1/q = 1, and $A \in M^n(\mathbb{C})$. The following hold.

- $(A) ||A||_{q \to p} \le ||A||_{p,p}.$
- (B) $||A||_{q \to p} \le ||A||_{\infty \to 1}$.

As a consequence, $\gamma_+(A) \ge \|A\|_{1,1} \ge \|A\|_{\infty \to 1} \ge \|A\|_{q \to p}$.

Proof. For the first statement, let $z \in \ell_q$. Then

$$\|Az\|_{p} = \left(\sum_{k=1}^{n} |\operatorname{Col}_{k}(A^{*}) \cdot z|^{p}\right)^{1/p} \le \left(\sum_{k=1}^{n} \|\operatorname{Col}_{k}A^{*}\|_{p}^{p} \|z\|_{q}^{p}\right)^{1/p} = \|A\|_{p,p} \|z\|_{q}.$$

Note that given $z \in \mathbb{C}^n$, $||z||_q \ge ||z||_{\infty}$ and $||z||_1 \ge ||z||_p$, so

$$|A||_{q \to p} = \inf_{\|z\|_q \le 1} \|Az\|_p \le \inf_{\|z\|_{\infty} \le 1} \|Az\|_1 = \|A\|_{\infty \to 1}.$$

Incidentally, we have the following.

Theorem 2.1 (Gluskin-Tanny '20). Let $A \in PSD^n(\mathbb{R})$. Then

(2.2)
$$||A||_{1,1} \leq 3\kappa_G (\operatorname{rk} A)^{1/2} ||A||_{\infty \to 1}$$

The dependence on $(\operatorname{rk} A)^{1/2}$ is sharp, with $A = \begin{bmatrix} O_{k \times k} & 0 \\ 0 & 0 \end{bmatrix}$ where $O \in \mathcal{O}(k)$ satisfies $|O_{kl}| \lesssim k^{-1/2}$.

Definition 2.1. Let X and Y be Banach spaces. An operator $A : X \to Y$ is *p*-nuclear if there are sequences $(x_k^*) \subset B_{X^*}, (y_k) \subset B_Y$, and $(\lambda_k) \in \ell_p$, such that

(2.3)
$$A = \sum_{k=1}^{\infty} \lambda_k x_k^* \otimes y_k$$

where the series is convergent in the $\mathcal{L}(X, Y)$ topology. Moreover,

(2.4)
$$\gamma_p(A) := \inf \|\lambda\|_p$$

We use $\mathcal{N}_p(X, Y)$ to denote the Banach space of nuclear operators from X to Y with norm $\gamma_p = \nu_p$. When p = 1, we drop the 1 in all the notation.

We mostly care about the case $X = \ell_{\infty}^n$, $Y = \ell_1^n$, and p = 1. In this case, $(\ell_{\infty}^n)^* = \ell_1^n$. In the infinitedimensional case, we use $X = c_0 \subset \ell_{\infty}$, so $X^* = \ell_1$.

Remark 2.1. Some facts:

- From construction, regardless of the Banach spaces X and Y and the moment $1 \le p < \infty$, every operator in $\mathcal{N}_p(X, Y)$ is the γ_p -limit of finite-rank operators, and so is compact.
- Let H_1 and H_2 be Hilbert spaces, then $\mathcal{N}_2(H_1, H_2) = \mathcal{S}_2(H_1, H_2)$ isometrically. The latter consists of 2-Schatten operators or Hilbert-Schmidt operators, with norm $\|A\|_{\mathcal{S}_2}^2 = \sum_k \|Ae_k\|_{H_2}^2$.

Proposition 2.2 (Lemma 2.7 in [2]). Let $A \in M^n(\mathbb{C})$, viewed as an operator from $\ell_{\infty}^n \to \ell_1^n$. Then $\gamma(A) = \|A\|_{1,1}$.

Proof. Fix $A \in \mathcal{M}^{n}(\mathbb{C})$. To show $\gamma \leq \|\cdot\|_{1,1}$, we can write

$$A = \left[\operatorname{Col}_1(A) | \cdots | \operatorname{Col}_n(A)\right] = \sum_{k=1}^n \delta_k^* \otimes \operatorname{Col}_k(A).$$

Therefore,

$$\gamma(A) \le \sum_{k=1}^{n} \|\operatorname{Col}_{k}(A)\|_{1} \|\delta_{k}\|_{\ell_{1}} = \sum_{k=1}^{n} \|\operatorname{Col}_{k}(A)\|_{1} = \|A\|_{1,1}.$$

For the other direction, let $\epsilon > 0$, and let $(x_k), (y_k) \subset \ell_1^n$ with $||x_k||_1, ||y_k||_1 \leq 1$, and $\lambda \in \ell_1$, such that $A = \sum_k \lambda_k x_k y_k^*$ and $||\lambda||_1 \leq \gamma(A) + \epsilon$. Then

$$\|A\|_{1,1} = \left\|\sum_{k} \lambda_k x_k y_k^*\right\|_{1,1} \le \sum_{k} |\lambda_k| \|x_k y_k^*\|_{1,1} \le \sum_{k} |\lambda_k| \|x_k\|_1 \|y_k\|_1 \le \gamma(A) + \epsilon.$$

3 Preliminary properties for γ_+

Proposition 3.1. γ_+ is sub-additive and positive-homogeneous on PSD^n .

Proof. Let $A, B \in \text{PSD}^n$, and let $(z_k), (w_k) \subset \ell_1^n$ satisfies

$$\sum_{k} \left\| z_{k} \right\|_{1}^{2} \leq \gamma_{+}(A) + \epsilon \quad \text{and} \quad \sum_{k} \left\| w_{k} \right\|_{1}^{2} \leq \gamma_{+}(B) + \epsilon.$$

Concatenate and re-index z_k and w_k to form $(x_k) \subset \ell_1^n$, so $A + B = \sum x_k x_k^*$. Moreover,

$$\gamma_+(A+B) \le \sum_k \|x_k\|_1^2 = \sum_k \|z_k\|_1^2 + \sum_k \|w_k\|_1^2 \le \gamma_+(A) + \gamma_+(B) + 2\epsilon.$$

Positive homogeneity is proved similarly.

Definition 3.1. Let $u: X \to X$ be a finite rank operator. Then we can write $u = \sum_{k=1}^{N} x_k^* \otimes \tilde{x}_k, x_k^* \in X^*$ and $\tilde{x}_k \in X$. We can define the trace of u to be $\operatorname{tr}(u) = \sum_k x_k^*(\tilde{x}_k)$. This definition is invariant of representation.

Proposition 3.2. Given $A \in PSD^n$, we have $\gamma(A) \leq \gamma_+(A) \leq n \operatorname{tr}(A) \leq n ||A||_{1,1} = n\gamma(A)$.

Proof. The only nontrivial inequality is $\gamma_+(A) \leq n \operatorname{tr}(A)$. Fix $A \in \operatorname{PSD}^n(\mathbb{C})$ and let $(z_k)_{k=1}^N$ be any factorization $A = \sum_k z_k z_k^*$. Since

$$||z_k||_1 = ||z_k \cdot 1_n||_1 \le ||1_n||_2 ||z_k||_2 = \sqrt{n} ||z_k||_2,$$

we have

$$\gamma_+(A) \le \sum_k \|z_k\|_1^2 \le n \sum_k \|z_k\|_2^2 = n \sum_k z_k^*(z_k) = n \operatorname{tr}(A)$$

Proposition 3.3. Given $A \in PSD^n$, we have $\gamma_+(A) \leq \operatorname{rank}(A)n^{1/2} ||A||_{2\to 1} \leq \operatorname{rank}(A)n^{1/2} ||A||_{\infty\to 1} \leq \operatorname{rank}(A)n^{1/2} ||A||_{1,1}$.

Proof. Let $A = \sum_{k=1}^{r} z_k z_k^*$ be the spectral factorization, $r = \operatorname{rank}(A)$, and $Az_k = \lambda_k z_k$ with $\lambda_k > 0$. Let $e_k = \lambda_k^{-1/2} z_k$. Then

$$\lambda_k \|z_k\|_1 = \|Az_k\|_1 \le \|A\|_{2 \to 1} \|z_k\|_2.$$

Rearrange, we see that

$$|z_k||_1 \le ||A||_{2 \to 1} \lambda_k^{-1/2} ||e_k||_2 = ||A||_{2 \to 1} \lambda_k^{-1/2}.$$

For the other copy of $||z_k||_1$, use Hölder's inequality again to get $||z_k||_1 \leq \sqrt{n} ||z_k||_2$. Therefore,

$$\gamma_{+}(A) \leq \sum_{k=1}^{r} \|z_{k}\|_{1}^{2} \leq \sqrt{n} \|A\|_{2 \to 1} \sum_{k=1}^{r} \|e_{k}\|_{2}^{2} = \sqrt{n} \|A\|_{2 \to 1} \operatorname{tr} \left(\sum_{k=1}^{r} e_{k} e_{k}^{*}\right)$$
$$= \operatorname{rk}(A)\sqrt{n} \|A\|_{2 \to 1} \leq \operatorname{rk}(A)\sqrt{n} \|A\|_{1,1}.$$

4 Duality

Let S_1^n denote the unit sphere in ℓ_1^n . Let $\mathcal{M}(S_1^n)$ denote the cone of positive Borel measures on S_1^n , and let $\mathcal{M}_{\pm}(S_1^n)$ denote the space of signed Borel measures on S_1^n . By the Riesz-Markov-Kakutani representation theorem,

$$C(S_1^n)^* \cong \mathcal{M}_{\pm}(S_1^n)$$

We also have the duality of the positive cones

$$C_+(S_1^n)^* \cong \mathcal{M}(S_1^n).$$

Theorem 4.1 (R. Balan). For any $A \in PSD^n(\mathbb{C})$,

$$\gamma_+(A) = \inf\left\{\int_{S_1^n} d\mu : A = \int_{S_1^n} zz^* d\mu, \ \mu \in \mathcal{M}(S_1^n)\right\}$$

Consider the dual pairs $(\mathcal{M}_{\pm}(S_1^n), C(S_1^n))$ and $(\operatorname{Sym}^n(\mathbb{C}), \operatorname{Sym}^n(\mathbb{C}))$, where the bilinear forms are given by the natural duality pairing, so that we equip \mathcal{M}_{\pm} with the weak star topology, $C(S_1^n)$ with the weak topology, and $\operatorname{Sym}^n(\mathbb{C})$ with the Euclidean topology.

Consider the map

$$\Phi: \mathcal{M}_{\pm}(S_1^n) \to \operatorname{Sym}^n(\mathbb{C}) \quad \mu \mapsto \Phi(\mu) = \int_{S_1^n} z z^* d\mu.$$

The adjoint of Φ (with respect to the duality pairing) is given by

$$\Phi^* : \operatorname{Sym}^n(\mathbb{C}) \to C(S_1^n) \quad T \mapsto \Phi^*(T)(z) = \operatorname{tr}(T \cdot zz^*) = \langle z, Tz \rangle.$$

By linear duality theory, the following functional on $PSD^{n}(\mathbb{C})$

$$\delta_+(A) := \sup \{ \operatorname{tr}(AT) : T \in \operatorname{Sym}^n(\mathbb{C}) \text{ and } \langle z, Tz \rangle \leq 1 \, \forall z \in S_1^n \}$$

is the dual linear program of that associated with γ_+ .

Theorem 4.2. For all $A \in PSD^{n}(\mathbb{C})$, $\delta_{+}(A) = \gamma_{+}(A)$.

One direction is simple.

Lemma 4.1. $\delta_+ \leq \gamma_+$.

Proof. Fix $A \in \text{PSD}^n$ and let $\epsilon > 0$. Let $A = \sum_{k=1}^N z_k z_k^*$ be a decomposition such that $\sum_k ||z_k||_1^2 \le \gamma_+(A) + \epsilon$. Note that for any $T = T^*$ with $\langle z, Tz \rangle \le 1$ for all $z \in S_1^n$,

$$\operatorname{tr}(AT) = \operatorname{tr}\left(\sum_{k} z_{k} z_{k}^{*} \circ T\right) = \sum_{k} \langle z_{k}, Tz_{k} \rangle = \sum_{k} \|z_{k}\|_{1}^{2} \langle \frac{z_{k}}{\|z_{k}\|_{1}}, \frac{Tz_{k}}{\|z_{k}\|_{1}} \rangle \leq \sum_{k} \|z_{k}\|_{1}^{2} \leq \gamma_{+}(A) + \epsilon.$$

Theorem 4.3 (Hahn-Banach Separation Theorem). Let V be a topological vector space over \mathbb{R} and let $K, L \subset V$ be disjoint convex subsets of V with L compact. Then there exists a bounded linear functional $\phi \in V^*$ and a real number α such that

$$\phi(x) \le \alpha < \phi(y)$$
 for all $x \in K, y \in L$.

For the reverse direction, consider the convex body

$$\mathcal{K} = \{ (\Phi(\mu), \langle \mu, 1 \rangle + r) : \mu \in \mathcal{M}(S_1^n), r \ge 0 \} \subset \operatorname{Sym}^n(\mathbb{C}) \times \mathbb{R}$$

equipped with the induced topology.

Lemma 4.2. Let $A \in \text{PSD}^n(\mathbb{C})$. Suppose $\delta_+(A) = M$, then $(A, M) \in \overline{\mathcal{K}}$.

Proof. Suppose towards a contradiction, that $(A, M) \notin \overline{\mathcal{K}}$. Then (A, M) is separated from \mathcal{K} by a hyperplane, i.e., there exists some $(T_0, \lambda) \in \text{Sym}^n(\mathbb{C}) \times \mathbb{R}$ such that

$$\langle (A, M), (T_0, \lambda) \rangle < \langle \mathcal{K}, T_0 \rangle$$

More explicitly,

(4.1)
$$\operatorname{tr}(AT_0) + \lambda M < \operatorname{tr}\left(T_0 \cdot \int_{S_1^n} zz^* d\mu\right) + \lambda \int_{S_1^n} d\mu + \lambda r \text{ for all } \mu \in \mathcal{M}(S_1^n) \text{ and } r \ge 0.$$

By setting $\mu = 0$ and r = 0, we see that

(4.2)
$$\operatorname{tr}(AT_0) + \lambda M < 0.$$

Note that we must also have

(4.3)
$$\operatorname{tr}\left(T_0 \cdot \int_{S_1^n} zz^* d\mu\right) + \lambda \int_{S_1^n} d\mu + \lambda r \ge 0 \quad \text{for all } \mu \in \mathcal{M}(S_1^n) \text{ and } r \ge 0.$$

By setting r = 0 in (4.3) and let μ range over all possible Borel measures, we have

(4.4)
$$\Phi^*(T)(z) = \langle z, T_0 z \rangle \ge -\lambda \quad \text{for all } z \in S_1^n.$$

By setting $\mu = 0$ in (4.3), we have

 $\lambda \geq 0.$

• Suppose $\lambda > 0$. Then $-\lambda^{-1}T_0 \in \text{Sym}^n(\mathbb{C})$ and $\langle z, -\lambda^{-1}T_0z \rangle = -\lambda^{-1}\langle z, T_0z \rangle \leq 1$ by (4.4). Therefore, $-\lambda^{-1}T_0$ is feasible for δ_+ . By (4.2), $(A(-\lambda^{-1}T_0)) > M,$

$$\operatorname{tr}(A(-\lambda^{-1}T_0)) > M$$

contradicting M being the supremum.

• Suppose $\lambda = 0$. Let $\tilde{T} \in \text{Sym}^n(\mathbb{C})$ with $\langle z, Tz \rangle \leq 1$ for all $z \in S_1^n$. It is clear that $\tilde{T} - \alpha T_0 \in \text{Sym}^n(\mathbb{C})$ for all $\alpha \geq 0$. Since $\Phi(T_0)(z) \geq 0$ for all $z \in S_1^n$, we have $\langle z, (\tilde{T} - \alpha T)z \rangle \leq 1$ for all $z \in S_1^n$ and $\alpha \geq 0$. Therefore, $\tilde{T} - \alpha T_0$ is feasible for δ_+ for all $\alpha \geq 0$. Since $\operatorname{tr}(A(\tilde{T} - \alpha T_0)) \leq \delta_+(A) = M < \infty$, we must have $\operatorname{tr}(AT_0) \geq 0$. This contradicts (4.2).

In either case, we arrive at a contradiction. Therefore, $(A, M) \in \overline{\mathcal{K}}$.

Lemma 4.3. \mathcal{K} is closed.

Proof. Let $(A_j, M_j)_j$ be a sequence in \mathcal{K} converging to $(A, M) \in \operatorname{Sym}^n(\mathbb{C}) \times \mathbb{R}$. By definition, there exists a sequence $\mu_j \in \mathcal{M}(S_1^n)$ and $r_j = M_j - \int_{S_1^n} d\mu_j \in \mathbb{R}$, such that $A_j = \int_{S_1^n} zz^* d\mu_j$. We may, without loss of generality, assume that $\int_{S_1^n} d\mu_j \leq 100M$. By weak-star compactness, we can replace μ_j by a subsequence, such that $\mu_j \to \mu \in \mathcal{M}(S_1^n)$ in the weak-star topology. Integrate against zz^* , we have $\int_{S_1^n} zz^* d\mu = A$. Integrate against the constant function 1, we have $M = \int_{S_1^n} d\mu + \lim_j r_j$. Since $r_j \geq 0$, $\lim_j r_j \geq 0$. Therefore, $(A, M) \in \mathcal{K}$.

References

- Radu Balan, Kasso A. Okoudjou, and Anirudha Poria. On a problem by Hans Feichtinger. Operators and Matrices, 12(3), 2018.
- [2] Radu Balan, Kasso A. Okoudjou, Michael Rawson, Yang Wang, and Rui Zhang. Optimal l¹ rank one matrix decomposition. In *Harmonic Analysis and Applications*, pages 21–41. Springer International Publishing, 2021.
- [3] Chirstopher Heil and David Larson. Operator theory and modulation spaces. In Frames and Operator Theory in Analysis and Signal Processing, Contemporary Mathematics. American Mathematical Society, 2006.