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Preface

These written lectures are the companion to the NSF-CBMS Regional
Research Conference in the Mathematical Sciences, organized July 20-24,
2009 at Central Connecticut State University, by Eran Makover and Jeffrey
McGowan. My goal for the lectures is a generally self-contained course for
graduate students and postgraduates. The topics run across current research
areas. By plan the approach is didactic. Concepts are developed across
multiple lectures. Opportunities are taken to introduce general concepts, to
present recurring methods and to generally provide proofs. Guides to the
research literature are included.

The study of Riemann surfaces continues to be an interface for algebra,
analysis, geometry and topology. I hope that in part I am able to suggest
the interaction to the audience and reader. The lectures are not intended
as a proper research summary or history of the field. A collection of current
and important topics are not included. Material is not always presented
following the historical development of concepts. The references are not
all inclusive but are intended only as a lead-in to the literature. Further
readings are provided at the ends of chapters.

I thank the Conference Board of the Mathematical Sciences and the Na-
tional Science Foundation for supporting the undertaking. NSF Grant DMS
0834134 supported the Regional Conference and lectures. Any opinions,
findings and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National
Science Foundation.

First and foremost, I would like to thank Eran Makover and Jeffrey
McGowan. The idea for a conference, the planning and all the arrange-
ments were smoothly and efficiently handled by Eran and Jeff. On behalf of
the participants I would like to express appreciation to Central Connecticut
State University for providing arrangements and facilities. I am most ap-
preciative for the conference participants’ engagement and feedback. Also, I
especially would like to thank Bill Goldman, Zheng (Zeno) Huang, Zachary
McGuirk, Babak Modami, Kunio Obitsu, Athanase Papadopoulos and Mike
Wolf for detailed comments, feedback and contributions.

Scott A. Wolpert
January, 2010
College Park, Maryland

vii



 


	cbms-113-titlepages
	cbms-113-cip
	cbms-113-toc
	cbms-113-pref

