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Annals of Mathematics, 117 (1983), 207-234

On the symplectic geometry of deformations
of a hyperbolic surface

By Scortr WoLPERT*

Let R be a Riemann surface. In this manuscript we consider a geometry on
the moduli space X(R) for R, which we regard as the space of equivalence
classes of constant curvature metrics on the underlying smooth manifold of R.
Classically the space of flat metrics for a torus is the locally symmetric space
O(2) \ SL(2; R) /SL(2; Z). We shall describe a symplectic geometry for the space
of hyperbolic metrics on a surface of negative Euler characteristic.

The Teichmiiller space T(R), a covering of the moduli space, is a complex
Kihler manifold. A Kihler metric for T(R), defined in terms of the Petersson
product for automorphic forms, was introduced by Weil, [1]. The Weil-Petersson
metric is invariant under the covering transformations and so projects to the
moduli space X(R). The metric provides a link between the function theory of R
and the geometry of X(R).

In the Fenchel-Nielsen manuscript [8] a deformation, based on an amalga-
mation construction for Fuchsian groups, is introduced. The deformation is
defined geometrically by cutting the surface along a simple closed geodesic,
rotating one side of the cut relative to the other, and attaching the sides in their
new position. The hyperbolic metric in the complement of the cut extends to a
hyperbolic metric on the new surface. Choose a free homotopy class [a] on the
surface R; then for each marked surface R realize [a] by the closed geodesic ag.
The Fenchel-Nielsen deformations for the ay then define a 1-parameter group of
diffeomorphisms of T(R), whose infinitesimal generator by definition is the
Fenchel-Nielsen vector field ¢,. In [21] the Fenchel-Nielsen deformation was
described in terms of quasiconformal mappings and an investigation of the vector
fields t , was begun. The Fenchel-Nielsen vector fields were found to be related
to the geodesic length functions l,, introduced by Fricke-Klein to provide
coordinates for T(R).

*Partially supported by a grant from the National Science Foundation; Alfred P. Sloan Fellow.



208 SCOTT WOLPERT

Our discussion of the symplectic geometry for T(R) begins in Sections ’ﬁ
and 4 with the duality formula

w(ta, )= _dlaa

where  is the Weil-Petersson Kihler form. As a consequence we have that the
Fenchel-Nielsen vector fields are Hamiltonian for the symplectic form w; i.e. the
Lie derivative L, w is zero. The Hamiltonian potential of the flow generated by ¢,
is the geodesic length function —1,. A second consequence is the cosine formula
w(ty,tg) = Y, cosf,,
pEaH#f

where the sum is over the cosines of thg angles at the intersections of the
geodesics a and B in the geometry of R. Illustrated by this formula is the
correspondence between the symplectic geometry on T(R) and the hyperbolic
geometry of R.

From this we turn in Section 4 to consideration of the Lie bracket [¢,, t;].
First the normalized Fenchel-Nielsen vector fields T, are introduced. The
integral span of the vector fields T, is found to be a Lie algebra which has a
purely topological description. In the course of the discussion we consider the Lie
derivatives t,l; and ¢,,l , which are evaluated in terms of the hyperbolic
geometry of the geodesics a, 8 and y.

The manuscript is divided into four sections. We begin with a review of the
relevant analytic theory of Teichmiiller space. References for this material are the
articles of Ahlfors [1], [2], [3], Bers [4] and Earle [7]. The Fenchel-Nielsen vector
fields ¢, length differentials dl,, and Weil-Petersson metric are introduced in
the second section. The third section is devoted to the calculation of the Lie
derivatives t,l; and ¢,¢51,. Our approach consists of first calculating the deriva-
tive for the case of the hyperbolic plane and then forming the sum, a Poincaré
series, over the uniformization group of the Riemann surface. Finally in the last
section we explore the Weil-Fetersson symplectic geometry of Teichmiiller space.

I would like to thank R. Brooks, L. Greenberg and S. Kudla for their
encouragement and suggestions.

1. Preliminaries

The Teichmiiller space of a Riemann surface S, where S has a hyperbolic
metric of finite area, is a complex manifold. We begin by discussing its tangent
and cotangent spaces. The universal cover of S is the upper half plane H
endowed with the hyperbolic metric and the uniformization group is a finitely
generated Fuchsian group. The isometry group of H is identified with PSL(2; R);
PSL(2; R) acts by Mobius transformations. A discontinuous group of isometries of
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I} is Fuchsian. Specifically we shall consider finitely generated Fuchsian groups
with torsion having limit set R, the real axis. All considerations unless otherwise
indicated are for groups satisfying this description.

Introduce M(T"), the vector space of I' invariant Beltrami differentials. A
Beltrami differential p € M(T') is a complex valued, measurable, essentially
bounded function u(z) on H. The function p satisfies the I' transformation law
w(¥(2))Y'(2)/v(2) = p(z), for all y €T and thus defines a tensor of type
(—1,1) on the Riemann surface H/T. The vector space Q(T') of integrable
holomorphic quadratic differentials will also be considered. An element ¢ € Q(T')
is a holomorphic function ¢(z) on H satisfying ¢(v(z))y'(2)% = @(z), for all
y €T and [,|g| is finite, where A is a I' fundamental domain. An element of
Q(T') defines a symmetric tensor of type (2, 0) on H/T. Given p € M(T) and
@ € Q(T') the product pe is a I' invariant area form; the integral pairing
(u, ) = [yno is well defined. The null space Q(T')* € M(T) of the pairing is of
special interest; define N(I') = Q(T')*. The finite dimensional vector spaces
M(T")/N(T') and Q(T') are dual.

The holomorphic tangent and cotangent spaces at I' of the Teichmiiller
space are identified respectively with M(I") /N(T") and Q(T'). Solving the Beltrami
equation is the fundamental construction. Denote by M;(T") the open unit ball of
M(T') endowed with the L norm. Given p € M(T) the Beltrami equation

(1.1)

w;=pw,, z€H
w; = jg(z)w,, 2€C—-H

has a unique homeomorphism solution w = w* with normalization: w fixes 0, 1
and oo ([3], [7]). The map w(z) is quasiconformal; an elementary argument
provides that wl'w ™! is again a Fuchsian group. A new conformal structure is
defined for the topological surface underlying H/T by declaring w to be an
isothermal coordinate. The new structure is conformally equivalent to H/wTI'w 1.

A quasiconformal solution to (1.1) defines an isomorphism of Fuchsian
groups: p,: I' = wlw™! by p,(y) = wyw™1, for all y € T. An equivalence
relation for isomorphisms is defined by p,, ~ Py,» Provided a Mobius transforma-
tion A exists such that p, ., = p,,. The Teichmiiller space of I, T(T'), is the set
of equivalence classes. T(I') inherits the structure of a complex manifold by
declaring the natural projection ®: M (T') - T(T') to be holomorphic. The
equivalence relation ~ and complex structure are independent of the choice of
I. The kernel at the origin of the differential d® of the map ®: M(T') - T(T) is
N(T') € M(T'). Accordingly, the quotient space M(I") /N(T') represents the holo-
morphic tangent space of T(I") at ®(0). The dual of M(T')/N(T') is Q(T') which
then represents the holomorphic cotangent space of T(T') at ®(0). The integral
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pairing Re(p, ) = Refy rpe, p € M(T), ¢ € Q(T'), induces the natural pair-
ing of the underlying (real) tangent and cotangent spaces.

A natural Hermitian structure on T(I') is given by the Hermitian
form h(e,y) = [y /rtpl,l/(lm 2)72% @, ¢ € Q(T). The associated inner product
(@, ¥) = $Re [, re¥(Im z) 2 is the Weil-Petersson cometric for T(T'). The
metric is Kihler, has negative holomorphic sectional curvature and is invariant
under the action of the Teichmiiller modular group ([1], [2]). We shall consider in
Section 4 the symplectic structure of the Kihler form.

Each coset of M(I') /N(T') has a unique harmonic representative. In particu-
lar the Beltrami differentials (Im z) ~%p, ¢ € Q(T) are the harmonic tensors of
type (—1, 1) with respect to the hyperbolic Laplacian. Denote by B(I") the space
of harmonic tensors of type (—1, 1). The projection P: M(I') — B(T’) is given by
the integral

(12) PIKI(E) = (im o) 2 [ 0 cdote

for up € M(T), where do is the Euclidean area form, [2]. We note for reference
that the kernel of P (with the hypothesis on T in effect) is the subspace N(T');
indeed [y, rue = [y, rP[ple, for all p € M(T), for all ¢ € Q(T'). The Weil-
Petersson Riemannian structure is given on the tangent space by the quadratic
form

(1.3) g(p,») = 2Re fH /TP[u]m(lm z)7"

for all p, » € M(T"). We close our general discussion of the tangent and cotan-
gent spaces with the observation that 2(Im z) ~2P[u] € Q(T') is the Riemannian
dual of the real tangent vector given by p, p € M(T").

Now we consider the action on R of a solution of the Beltrami equation
(1.1). Let p,, and p,, be isomorphisms of I' as described above. A fundamental
point is that the relation p, ~ p,, is equivalent to the condition w|g = wy|g.
Consequently the assignment p = w*|g, p € M(T"), induces an embedding of
Teichmiiller space into the set of homeomorphisms of R. We shall study this
embedding by considering the restriction of w to a finite number of points. First
let us discuss the differential of the solution map p — w*.

Let u(¢), a Beltrami differential defined for small ¢, satisfy ||u(e)||,, < 1 and
p(e) = eug + o(e) in L*(H). Equation (1.1) has a unique normalized solution w*
for w(e). An expansion w%(z) = z + ew(z) + o(e), where o(¢) is uniform on
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€

. dw ) .
compact sets, is valid. The first variation > = P is characterized by

€ |e=

i)

w; = o inH,
d)£=[.t0(2) inC_H

in the sense of weak L2 derivatives and
ii) b vanishes at 0, 1 and is 0(|z|2) at oo, [3].

Alternately b is given by the potential integral

19 blpela) = = [ue)PE, 2) + mBIP(E 2) do(§)

where P(¢, z) = §1z + z;l

resents the differential at the origin of the solution map p — w*, [3]. Evaluation
of the integral (1.4) is fundamental to the analytic approach to Teichmiiller
theory.

We shall be considering n-tuples of points on the extended boundary
R = R U {0} of the half plane H. The action of the isometry group of the
hyperbolic plane H extends to R. The action is effective and transitive on the set
of oriented triples of points. Consequently four points of R form a geometric

(p=r)g—3) .

(p—s)g—r)
the quadruple. We adopt the convention for all considerations involving the cross
ratio that if any of p, q, r or s is the point at infinity then the value is determined
by continuity. We focus our attention on invariants of H/T given by the cross
ratio of tuples from R. Such a quantity is a function on the Teichmiiller space
and hence has a differential given by an element of Q(T').

o f 1 [3]. The linear map p — w[p] rep-

configuration. The cross ratio (p, q, r, s) = s the invariant of

Lemma 1.1. Let p € M(T') and w*, |ep|.,, < 1 be the solution of (1.1).
Given p, q, r, and s € R, distinct, then

ZlElE(w”"(p), w(q), w*(r), w*(s))|

20 0 r )Re S
= (e e b e e ey o)

Proof. ‘The first variation (1.4) w[u](z) of w*(z) is given for z € R by

alu]() = - Re [ (§P(. 2) do(?).
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Now proceeding formally, we have

%(w”‘(p), w(q), w*(r), w*(s))

— (p,q,r, S)( (w[u](pz - f’[#](’)) N (u">[u](q3 - 'f[u](S))
_ (w[pl(p) —w[pl(s))  (@[pl(q) —w[r](r))
p—Ss q-—r

_ 2 r s)Re pr+ qs — ps — qr o
=R KO T i - A -9 ¢

The argument is completed by transforming the calculation to the unit disc,
where the convergence is readily verified.

Now given a holomorphic function h € L'(H), by an argument of Poincaré,
the sum (a Poincaré series)

®h= Y hoAA?
AeT

converges uniformly and absolutely on compacts and indeed ®h € Q(T'). If we
observe that H is tessellated by a I fundamental domain, it is elementary that

f phdo = f pOh
H H/T
for h € LY(H) and p € M(T).
Definition 1.2. Given p, g, r, s € R, distinct, then

poars)= -2 . ¢)—(Pr+gs—ps—qr)
KEipars) = =2 (pan ) o = e - = 9)

From the above remarks OK(p, g, r, s) € Q(T") and represents the differen-
tial of the invariant (p, q, r, s). We record this observation in the following.

LemMa 1.3. Let p, g, 7, s € R and w™, llepll, < 1, p € M(T), be a solu-
tion of (1.1). Then

75 ((p), w(a), w™(r), wH(s))| = Re(, 0K) = e oK.

Observe that because of the invariance of the cross ratio we need not require
w*® to be normalized. We shall consider three applications of the above lemma.

Example 1. The length of a closed geodesic. Consider a Mobius transforma-
tion A: 2 = Az, A > 1, an element of the Fuchsian group I'. The projection to
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H/T of the axis of A, the imaginary axis, is a closed periodic geodesic. This
geodesic has length log A = log(At, t,0, 00), where ¢ is arbitrary in R — {0).
More generally, assume A is a hyperbolic transformation, A € T, with repelling
(resp. attracting) fixed point 7, (resp a,). The length of the geodesic a associated
to A is log(As, s, 7,, a,) for s € R — (r,, a,). The length of a, l,, is a geometric
invariant of H/T (the geodesic length function). Given p € M(T'), the differen-
tial dl, evaluated on the tangent vector p is

Re(p,dl,) = (As, s, 1,, aA)_lBef pOK(As, s, 1,,a,).
H/T

The variational formula for the length of a was given in a different form by

Gardiner, [10]. Let A = ((cl 2) and define

= (tr?A — 4)(ct® + (d — a)¢ — b) %,

where tr denotes the trace. The identity wp-1,p = w, © DD’? is elementary.
Denote by ( A) the cyclic group generated by A and define the relative Poincarée
series
(1.5) : e, = Z Wp-1aB

Be (AT
first considered by Petersson, as noted in [11]. Gardiner’s formula for dl,
evaluated on the tangent vector u, p € M(T), is

Re(p,dl) = gRef pe,.

We note that @ = (As, s,1y,a,) 'OK(As, s, 14, a,), an identity first noted
by Hejhal, [11]

Example 2. The angle of intersection of geodesics. Assume the points
g, r€R separate P, s € R. Then 1 Cos 0 2p,q,r,8)— 1, where 0 is the angle
formed by tp and ©g and v = ps N gr (given a, b € H U R, ab denotes the
unique hyperbolic geodesic with endpoints a and b). Given T acting on H, the
angle 2(p, g, 7, s) — 1 is a geometric invariant of H/T. The differential d cos 8
has value

Re(p,20K(p, q,1,5)) = 2Rej;1/rp.®K

on the tangent vector p, p € M(T).
Hejhal considered [11, p. 356, Example 1] the Poincaré series
OK(ry, 13, ap, a,) where A and B were of a special form. As will be indicated in
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the third section, his period table [11, p. 357] gives the twist derivatives of the
cosine of the angle between the axes of A and B.

Example 3. The twist parameter. Let a Riemann surface H/T" and a simple
closed geodesic y be given. The surface is cut open along v, one side of the cut is
rotated relative to the other and then the sides are attached in their new position.
The hyperbolic structure in the complement of the cut extends naturally to a
hyperbolic structure on the new surface. That the metric naturally extends is
suggested by observing that an ¢, ¢ > 0, sufficiently small, neighborhood of y is a
cylinder and supports a one dimensional group of rotation isometries. The
deformation preserves the orbits of this one dimensional group. In the case that y
separates H/T', the magnitude of the twist deformation is measured by the
location of a fixed point of an element of I', given the normalization of three
points to 0, 1 and oo, [21]. If ¥ does not separate, the magnitude of the twist can
be measured by the length of a second geodesic, [21]. These parameters are
expressible in terms of the cross ratio. If an initial value is fixed for the
parameter, then the subsequent value for a surface H/T" defines a function on
Teichmiiller space. Its differential is given in terms of OK.

2. The Fenchel-Nielsen vector fields

A one parameter family of deformations is defined by the construction of
Example 3. In particular, given a marked hyperbolic surface H/T, fix a simple
closed geodesic a. Cut the surface along a, rotate one side of the cut relative to
the other, and then attach the sides in their new position. A geodesic intersecting
the cut is deformed to a broken geodesic. The hyperbolic structure in the
complement of the cut extends naturally to a hyperbolic structure on the new
surface. By varying the amount of rotation, a one parameter family of deforma-
tions, the Fenchel-Nielsen (twist) deformations, is defined. We shall study the
tangent vector field of this family. By the identification of fundamental groups,
represents a free homotopy class on each marked Riemann surface. For a marked
surface R, consider the geodesic ay freely homotopic to a; let ¢, be the initial
tangent vector of the Fenchel-Nielsen deformation about ag. The assignment
R — t, defines a vector field on Teichmiiller space.

The basic idea for the deformation already appears in the work of Fricke-
Klein, [9]. The deformation as such is introduced in the work of Dehn and
Fenchel-Nielsen, [8]. In the Fenchel-Nielsen manuscript the deformation is
considered " extensively. The formal definition is given by an amalgamation
construction for Fuchsian groups. In [21], we obtain a description of the
deformation in terms of quasiconformal mappings. Accordingly here we begin
with the analytic definition in terms of Beltrami differentials. The deformation is
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normalized such that the hyperbolic displacement, measured between two points
on opposite sides of the geodesic a, increases at unit speed.

The prototype of the Fenchel-Nielsen deformation is for the case of (B)
a cyclic group, generated by the transformation B: z = Az, A > 0. Choose
¢(8), 8 = arg z, smooth with compact support in (0, 7) and [J¢ df = &. Define
®(0) = [{$ db. The formula

2.1 w = zexp(2e®(6))

defines a quasiconformal automorphism of H. The Fenchel-Nielsen deformation
is the induced map of H/(B) to H/w(B)w™'. Now we make the formal
definition. Assume A € T is a hyperbolic transformation corresponding to the
geodesic @ on H/T and that @, is the associated Poincaré series of Petersson
(see (1.5)).

Definition 2.1. The Beltrami differential ¢, = —(Im z)?@, is the tangent
vector to the Fenchel-Nielsen deformation about a.

If a is a simple closed geodesic then ¢, is the tangent vector to the
deformation discussed above, [21]. The Fenchel-Nielsen deformation for a non-
simple geodesic has not previously been considered. We shall describe a geomet-
ric characterization in Lemma 2.6. Now we take up the definition of the
Fenchel-Nielsen deformation in the large.

A point of Teichmiiller space is a marked Fuchsian group. Fix a reference
group I}, once and for all. A type-preserving isomorphism j of Fuchsian groups
I',, T, satisfies: j(y) is parabolic if and only if y is parabolic, for all y € T.
Consider pairs (T', j) where j: I;, = I is an orientation and type-preserving
isomorphism of Fuchsian groups. Pairs (T, j;) and (T}, j,) are equivalent
provided C, a Mobius transformation, exists with CT,C ~! = T, Cj,C ! = j,.
The equivalence class I" = ((T, §)} of a pair is a marked Fuchsian group. The
isomorphisms j are used to identify the marked groups. A geodesic @ on H/T,,
defines a conjugacy class [A] in I},. The conjugacy class [ j(A)] for I' determines
a geodesic j(a) on H/T. Associate to the marked quotient H/I" the tangent
vector ¢, ,, of Definition 2.1. By this assignment the vector field ¢, is defined on

j(e
the Teichmiiller space.

Definition 2.2. The Fenchel-Nielsen deformation about a of the marked
quotient H/T' is the integral curve of ¢, with initial point H/T'.

We observe that the Petersson series ©,, the vector field t,, and the
differential form dI, are all invariants of the geodesic a and the corresponding
transformation A € T'. These invariants are obviously related.
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Lemma 2.3. Given A € T, hyperbolic, then (t,)* = —idl,, where * indi-
cates the dual with respect to the Weil-Petersson metric.

Proof. By the preliminary discussion we have

2

_ —2p| @ 2= | _ _ .
(£.)* = 2(Im 2) P[ﬂ(lmz)@a] 2 ,= —id,

a

The functions !, and Weil-Petersson metric are known to be real analytic; by
the above the vector fields, ¢, must also be real analytic. We shall use juxtaposi-
tion ¢,J; to indicate the natural action of the tangent vector t, on the function .

THEOREM 2.4. Linear reciprocity of twist derivatives. Let a and B be
“geodesics on the quotient H/T'. Then

tel, + t 1y = 0.

Proof. The argument proceeds formally given Lemma 2.3; t5l, + t,l; =
(tg, —it,) + (t,, —itg). Since the Weil-Petersson metric is Hermitian the iden-
tity follows.

We now consider the question of providing a geometric interpretation for
the Fenchel-Nielson deformation about a non-simple curve.

Definition 2.5. Let A € T be a hyperbolic transformation. A is I-elemen-
tary if no axis of a conjugate of A separates the fixed points of A, and the axis of
A contains no elliptic fixed points.

A primitive, I-elementary transformation corresponds to a simple closed
geodesic. Given I') C T, a subgroup of finite index, then N(I') = N(T},) and
there is the natural inclusion of the tangent spaces, M(I')/N(T) into
M(T,)/N(T).

LEmMA 2.6. Let A € T' be a hyperbolic transformation. A finite index
normal subgroup T'; C T and integer m exist such that A™ is T'-elementary. Let
A,,..., A, be the T, \ T orbit of A™ € T,. Then

1 & .
= m Z tzf, n M(Fl)/N(rl)
=1

and A,,..., A, are T -elementary.

Proof. By a theorem of Scott [17], a finite index subgroup T}, C T exists with
A €T, and A is I-elementary. Choose a finite index I'-normal subgroup
I, c Ii,. Let m be the smallest positive integer such that A™ € T'}; then A™ is
I';-elementary. The group I' acts by conjugation on TI';; each I' conjugate of A™
is I';-elementary. Choose the representatives A ,. .., A, for the ', \ T conjugates
of A™; necessarily mn = [I': T';]. We shall establish the result for the Petersson
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series ©,,

0, = Z We-1pmc

Ce(A™\T

Z Z Wp-1c-1amcp

DET\T Ce(A™\T,

= I~

Z Wp-1p-igmpp
DeT\\I' Be(D~'A™D)\T},

Z ®D‘1A"'D‘
DeTl\I'

3=

3|~

We close this section with the observation that the identities for the traces of
the elements of a matrix product are dual to identities for the vector fields ¢,.

Example 4. Twist identities. If A € T is hyperbolic, then |tr A| defines in a
natural way a function on the Teichmiiller space. Using the identity 2 cosh 1, /2
= |trA| we see that the differentials d|tr A| and dl, are related: dtr A =
sgn(tr A)sinh I, /2 dl,, where sgn denotes the sign of a real number. Note that
tr A is locally well defined on Teichmiiller space. Now for A, B € SL(2; R) the
trace identity tr Atr B = tr AB + tr A" 'B is elementary. Forming differentials
we have tr Bdtr A + tr Adtr B=dtr AB + dtr A~ 'B. Assume A, B, AB and
A~ !B are hyperbolic; then applying Lemma 2.3 we have the dual identity

(2.2) 2sgn(tr AtrB)coshly/2sinhl,/2 t,

+2sgn(tr A tr B)cosh 1, /2sinh l;/2 t,
= sgn(tr AB)sinh l,5/2 t, + sgn(tr A"'B)sinh l,-15/2 t, 1.
A special case of the above is for A, B hyperbolic with parabolic commutator.
Then H/T(A, B), where I'(A, B) is the group generated by A and B, is a torus
with one puncture. In this case A, B, AB and A~ !B all correspond to simple

geodesics and hence the deformations are geometric. The vector fields t,, 4, t,
and ¢,-15 satisfy the identity (2.2).

3. The first and second Lie derivatives of a geodesic length function

The deformation discussed in the previous sections is an isometry in the
complement of the cut. A geodesic a intersecting the cut is deformed to a broken
geodesic a,. One expects that the associated periodic geodesic on the new
surface is obtained by sliding pairs of endpoints of the arcs of a, along the cut
until they meet with common tangents. In this event the derivatives tgl, and
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t,tgl, would involve the angles of the intersections a #f and possibly the lengths
of the arcs of a,. Indeed we find that this is exactly the situation.

We consider several applications of the formulas. A second reciprocity
identity is discovered. Furthermore, for the unique hyperbolic structure on the
complement of three points in the Riemann sphere C we find that pairs and
triples of geodesics satisfy geometric identities. The relation of these formulas to
the Weil-Petersson Kéhler form will be taken up in the next section.

Hejhal introduced periods for holomorphic differentials and used them to
study Poincaré series, [11]. Our method was inspired by Hejhal’s investigations;

we shall elaborate. Given A = | ¢ Z , hyperbolic, define the expression Q, =

c
(cz®2 + (d — a)z — b) ™. The quantity @, is an Abelian differential for the
cyclic group ( A). Now for ¢ € Q(I') and A corresponding to the geodesic a on
H/T Hejhal introduced the period

Az
PpsA) =4 [ o0y
%o
which is independent of z, and of the integration path. The period ¥ and
Fenchel-Nielsen tangent ¢, for a are related as follows, [21].

LEmMa 3.1.

f tp = Sgn;;fA)csch L/2%(g; A).
H/T t

To calculate the ¢, twist derivative of a cross ratio we must evaluate the
integral Re [y, 1£,0K, where K is the variational kernel of Definition 1.2. Hejhal
by comparison considered the periods Im (OR; A) for R a rational function,
[11]. The above lemma relates the two. An effective procedure for computation
of the periods was given by Hejhal. Two steps are involved: determination of the
separation properties of axes in H of elements of I', and the computation of
residues. Our considerations are for the cross ratio and the method is similar to
Hejhal’s. By virtue of the following lemma the computation of residues is reduced
to a combinatorial matter. Our approach exploits the geometry of the problem.

We begin with the considerations for the trivial group I' = {I}. Denote by
t(5,5,) the tangent vector to the twist along the single geodesic 5;5,; recall that
§,8, is the hyperbolic geodesic with endpoints s,, s, € R. We wish to evaluate
t(5152)(2;, %9, %3, 24). The tangent #(5,3,) is defined by an appropriate con-
jugate of (2.1); a normalization is not required because of the invariance of the
cross ratio. In particular note that #(s,3,) = #($,3,). The geodesic §,3, separates
H into two hyperbolic half planes; the ordering s, then s, is used to define a left
and right half plane.



DEFORMATIONS OF A HYPERBOLIC SURFACE 219

LEMMA 3.2. Assume z; € R 1< i < 4, are distinct and that s,, s, € R are
distinct. Then

t(5185)(21, 25, 23, 24)
4

= (21, 22, 23, 24) 2 XL(zj)[(zo(j)a S15 Sa, z,-) - (zf(,), 815 Sg, Zj)]
j=1

where

o=(1234) T=(1234)
3 4 1 2) 4 3 2 1

are elements of S,, the permutation group on four letters, and x, is the
characteristic function of the left component of R — (81> $3). The formula
remains valid if x is replaced by — X p; Xy is the characteristic function of the
right component of R — ( 8§15 o)

Proof. By the invariance properties of the cross ratio we may assume s, = 0,
sy = 00. Also we assume the deformation fixes 0, 1 and oco. The map inducing
the deformation is given in (2.1); in particular

we(z)={z, 2€R, 220
ez, z€R, z<0

where ¢ is the parameter of the twist. An elementary calculation of
%(w“(zl), w(z,), w(z;), w(2,))|,~, verifies the formula. The invariance of
the cross ratio allows us to replace w* by e ~ ‘w*, establishing the remark for x 5.

Observing that the twist derivative of a cross ratio is given in terms of cross
ratios, we can in particular compute derivatives of all orders. To compute the
effect of a tangent vector t,, we first lift the deformation to the universal cover
H. The twist tangent £, lifts to a sum of twists; the sum is over the components in
H of the preimage of a. We begin by calculating t,1;.

It will be convenient to introduce notation. Given geodesics a and 8 on
H/T, the intersection locus a #p is defined in terms of the parametrized arcs a
and B. Specifically if a = a(s) and B = B(s’), s, s’ € S}, are parametrizations,
then a #pB corresponds to the points (s,, s;) of the torus S! X S! such that
a(sy) = B(sp) is a transverse intersection of a and B. Assume a(sy) = B(s)) = p
and d (resp. f) is the branch of a (resp. 8) defined by a neighborhood of 8, (resp.
s¢) in S'. A trigonometric expression V(p) is defined by the geometry of the
ordered pair (&, B) at p:

i) Provided the covering is not ramified at p, V(p) = cosd where
0 < 0 < 7 is the angle at p measured from & to j3;
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ii) Provided the covering is raénified at p of order m, m even, V(p) =
2csc%sin(% - 0) where 0 < 6 < -;nz is the angle at p measured from & to B

(the complete angle at p is %);

iif) Provided the covering is ramified at p of order m, m odd, V(p) =
csc% sin(% — 0) where 0 < 6 < % is the ang~le at p measured from d to .
Note that in the second case the branches & and B end at p, while in the third

case they pass through p. Also observe that the quantity V(p) is antisymmetric in
a and B.

‘ Tueorem 3.3. The cosine formula. Let the geodesics a and B on H/T
correspond respectively to A and B in T'. Then

talg = Z V(p).

pEa#HB

Proof. By Example 1 the length of B is log(Bt, ¢, r5, ag). Choose t € R such
that it is not fixed by any element of I'. Assume @12 is in fact the axis of A and
102 separates g, a g with r to its left. Translates of ala2 are naturally identified
with the cosets (A) \T' by the rule: (A)C € (A)\T is associated to
C Y d,a5). Let § be the subset of elements C € T' such that C- Yd,d,)
separates 75,a5. If C€ ¢ then CB"€ 9, n € Z; (B) acts on § by right
multiplication. In the natural manner the double cosets (A)\ 9/(B) are
identified with the intersection locus a #p. First we consider the contribution to
tylp by the axes of (A) \ 9. Each ( B) orbit will be considered separately; it will
suffice to consider the ( B) orbit of A. Its contribution to t,1; is the sum

0

(3.1) > t(B'"(@z))log(Bt, t, 15, ap).
n=—o0

The description of the twist derivative as the integral Re [y rtOK is used to
establish the absolute convergence of (3.1). Replacing A by B~ ™AB™ if neces-
sary, we may assume ¢ is in the strip bounded by @,a, and B~ Ya,a,). The
summation (3.1) is divided into three parts: n > 1, n = 0 and n < —1. Now for
n > 1, rz is the only point of (Bt, ¢, r5, ap) to the left of B‘"(@z). Using
Lemma 3.2, we have

E t(B»_ "(@2))log(Bt, t, 1, aB)

n=1

0
(Bt, B""a,, B~"a,, rg) — (t, B "a,, B "ay, rz),

n=1
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and by the invariance of the cross ratio

(o]

=2 (BnHt’ a,,ay, "B) - (B"t,a,,a,, 15)

n=1
= (ag, a,, ay,15) — (Bt, ay,a,,13).
Now for the single term n = 0 we have
t(a,a,)log(Bt, t, 15, a5)
= (Bt,a,,a,,15) = (t,ay,a,,15) + (ap, ay,a,,t) — (15,01, a5, ¢).

With the identity (z, a, b, ¢) + (¢, a, b, z) = 1, this simplifies to (Bt, a,, a,, rg)
—(t,a,,a,,ag). Finally for n < —1, ay is the unique point in the right half
plane of B~ "(@,a,). Thus

-1
> t(B _n(afl-‘?z))l()g(Bt’ t, 75, ag)

n=—o0

-1

Y. (Bt,B "a,, B "a,,az)— (t, B "a,, B "a,,ag)
n=—o0

-1

Y (B"*',a,,ay,a5) —(B"t,a,,a,,az)

n=-o0
= (t,ay,a,,a5) — (15, 0,, a5, ag).

The total contribution of the three parts is

(aB’ a,,a,, ’B) - ("Ba a,,as, aB) = 2(“3’ a,,as, ”B) -1

Each (B) orbit in (A) \ 9 contributes such a term; hence

) t(C_l(‘{l?z))log(Bt’t’rB’aB) = )y 2(ap, ¢y, 63, 15) — 1
Ce(ANS CE(ANY/(B)
where ¢,C, the axis of C ~!AC has ry to its left.

The quantity 2(ag, c,, ¢, rg) — 1 is the cosine of the angle formed by the
intersection at p of ¢,C, and #zd 5. The total contribution of this intersection to
the derivative is expressible in terms of the local geometry at p, the projection of
p to H/T. The expression V(p) is immediate if p is not an elliptic fixed point. If
p is an elliptic fixed point of even order (the normalizer of (A) is infinite
dihedral) we sum over the stabilizer of $ and obtain the contribution at p,

=,
2y cos(0 + j—z) = 2csc£sin(z - 0).
) m m m
Finally if $ is an elliptic fixed point of odd order (the normalizer of (A) is
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infinite cyclic), then the contribution at p is

jg)lcos(0 + ]%) = csc%sin(% - 0).

The proof will be completed if we show that
Y  t(CXaa,))log(Bt,t,15,a5)
Ce(AN\T'-§
vanishes. First consider those terms such that Bt, ¢, r5 and ag are in a common
half plane of C ~}(5,3,). Recall that the twist deformation (2.1) is an isometry in
each of its half planes. Each of the terms under present consideration vanishes. It
“now remains to consider those cosets (A)C € (A) \T such that C ~Ya,d,)
separates Bt or ¢ from r/,?z - Certainly (CB)~ Y(@,a,) separates ¢ from rza  if and
only if C~ 1((1/1?12) separates Bt from 75d 5. With this in mind the remaining terms
of the sum are grouped in ordered pairs (( A)C, ( A)CB), where C ~! separates ¢
from 7za,. In the special case of an axis C _1(@2) separating both ¢ and Bt
from #za 5, the coset ( A)C will occur in two distinct pairs. Now group the terms
for the pair ((A)C, (A)CB):

(#(C~X(@18y)) + ¢((CB)~\(@ay)))log(Bt. ¢, 75, ap)-
The C ~Y(a,a}) term is
(r5,C~'a,, C~'ay, Bt) — (a5, C~'a;,C~la,, Bt),
while the (CB) " (a,a,) term is
(as,(CB) 'a,,(CB) 'as, t) = (15,(CB) ay, (CB) 'a,, t).

Their sum is zero and consequently if we group the remaining terms of the sum
L anr-g» the vanishing follows. The calculation of t,l5 is complete.

Now we turn to the consideration of the second twist derivative. Our
method is the same. In order to simplify the calculations, elliptic elements will
not be considered.

TueEOREM 3.4. The sine length formula. Let the geodesics a, B and y on
H/T correspond respectively to A, B and C in T'. Assume the axes of A and C
contain no elliptic fixed points. Then
ol ol
(3.2) tctylp = Yy e—l-l-—e-z—sin 6,sin 6,
| v, e #R)x(axp) 2(e® = 1)

e™+ e™ | .
- hy ——————sinf,sin §,,
(r, ) E(Y#a) X (a #B) 2(e's = 1)

where 0, is the angle at the indicated intersection. The quantities 1, l, (respec-
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tively m,, m,) are the distances along B between p and q (respectively along a
between r and s).

Proof. We begin with the formula t,lz =¥ c,4gc0s 0,. By linearity it
suffices to consider t:cos 6,, ¢ € a #B. As much as possible we continue with
the notation of the above d1scu551on Again we refer to the integral Re [, rt,0K
and have that £y, oy r#(D ~(d,8,))2(ag, a,, a,, r5) can be computed term by
term. The situation requires a careful tally of the axes separating ag, 75, @, and
a,. Note that a,a, is the ax1s of A. Reca]l that if the points z,, 2z,, z; and 2z, are
in a common half plane of 53, then (5,5,)(2,, 25, %, z4) = 0. Accordingly we
focus our attention on S the set of axes ir in the orbit of 0/132, the axis of C, which
separate a g, 75, a, and a,; denote by slsz an element of &. Now S is partitioned
into three subsets:

i) §,8, € S, such that §;3, intersects 75, and for all n € Z, B~"(53,)
does not separate a,, a,;

i) §,5, € S, such that §3, intersects d,d, and for all n € Z, A~ "(5,85)
does not separate rg, ag;

iii) §,3, € S, such that D € (A) U (B) exists with D ~!(5,3,) intersecting
both 73d and a,a,.

In the manner of the t,l; calculation we shall sum over the (A) and ( B)
orbits. Note that D in case iii) may not be unique. We begin with case i) and
orient 3, to place r, to the left. By invariance we may assume a g=0,15=0
and if necessary §,3, is replaced by B~ "(slsz) to ensure that §,3, is contained in
the strip bounded by ala2 and B~ (alaz) The contribution to the derivative
from the ( B) orbit of §,5, is £2_ _ _t(B ™~ "(5,5,))2(c0, a,, a,, 0). We decompose
this sum into two parts: n > 0 and n < —1. For n > 0, the only element of
{0, a,, a,, oo} to the left of B~ "(3/132) is 0. Consequently we have

Z t( 3132))2(00 a,,a,,0)

o]
Y. 2(w, ay, ay,0)[(a;, B™"s;, B~"s,,0) — (c0, B™"s;, B~ "s,,0)]
n=0

R o)

2(oo,‘d1, a,,0)(0, s, s5,0)(s;,a,,0,0) Y, A(B) ",
n=0

where A(B)(> 1) is the multiplier of B. For n < —1, the only element of
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{0, a,, a,, o) to the right of B~"(5,3,) is c0. We calculate
-1
Y t(B7"(5:8,))2(c0, @y, a,,0)

n=—oo
-1
= Y 2(,a,,a;,0)[(0, B "s;, B""s;, ) — (ay, B~"s;, B™"s,, 00)]

n=—oo
-1
—Qa,s
- 2(c0, a,,a,,0 22
n=Z—oo (oo 1o G )(32(3_"31_3_"32)

-1
2( oo, a,, az’O)(O, $1> 895 00)(‘12, 85,0, ) Z A(B)

The total contribution of the ( B) orbit of §,3, is
2
5\(_3)“:(‘30’ a,,a,,0)(0, s;, 55, °°)[>‘(B)(31’ a,,0,00) +(ay, 55,0, °°)]

Without the normalization of 75 and a5, the expression becomes
2
A(B) — 1 (ag, ay, ay, 15)(r3, 8y, 8, aB)P\(B)(sl’ a,, g, ag)+(ay, sy, 15, aB)]‘

In particular if A = C then 51712 € § is considered under case i) and contributes
the term

A(B) +1
2XE—B§—_1(03’ al, a2’ TB)(TB,al,az’aB).

We now derive an intrinsic expression for
A(B)(s1,ay, 15, ag) + (@, 85, 15, a3).

An arc 0102, 01,0 € R, is contained in the locus of (2x — v, — 0,)2 + 4y =
(v, — vy)% If 0,0, intersects 00 the ordinate of the intersection is y =
(—v;0,)"% K a second arc W, u, u; € R intersects Ooo then l

2log u1u2/0102 is the signed distance along 0o from v,0, N 000 to Uyt N
000. Now e'((uy, uy,0, 00)(v;, 05,0, 00))/2 = |(uy, v,,0, )| and thus

A(B)(sl’ a,, g, aB) + (‘12’ S2, Tg> aB)

= ((ag, a,, 15, ag)(s1 89, 75, aB) [el' + k],

where 1,, l, are the distances on H/T along B between the projections of
§18y N pap and @,84 N 7pdp. Finally we note the symmetry (z,a, b, c) =
(b, z,a,c) — 1)/(b, z, a, c).

We now treat case ii) by reducing to case i). In the discussion thus far it has
not been necessary to distinguish A from A~!. Choose A such that a, = a, and
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a, = 1,. Interchanging the roles of A and B in the calculation for case i), we have
the formula

(o]

—n 2
)y t(A (51\32))2(‘1‘4"13”’3’7‘4)=m(amaa’rs”k)(fm31’32"1A)

n=-—oo

) ((TB’ Ap; Ty aA)(Sl’ Sg5 Tas aA))l/z[ bt elz]

where l vk I, are the distances along a between the projections of 5d ; N a,a,and
d,dy N 515, Thus by substitution of the symmetry (ag,a,,ay,15)=1—
(ag, ag, 13, a,), the contribution of the (A) orbit of 5,3, (case ii)) is

[oe]

n -2
Z t(A (@2))2(‘13’01’02”’3) )\(A) (aB’azaal’TB)(alasl’Szaaz)

n=—o00

- ((r,ap, ay, ay)(s;, 85, a4, ‘12))1/2[ by elz]

Case m) is also treated by reducing to case i). A representative §,3, is chosen
to intersect 754 p; separate sums are then considered for the orbit ( B)(5,3,) and
the orbit (A)B %(513,) where B ~¥(53,) separates @,d,. For an axis B~ X(573,)
intersecting @,d,, the expression for ¢(B ™ *(513,))(ag, a,, a,, 13) can be written
as the sum of a term from the orbit (A)B~X(5,3,) and a term from the orbit
(B )(3132) The total contribution of axes from case iii) is a finite sum of distinct
(B) orbits, similar to case i), and distinct (A) orbits, similar to case ii). A
moment’s reflection shows that each point of y #8 contributes a term as in case
i), and each point of y #a contributes a term as in case ii). The final formula is
obtained after elementary trigonometric simplifications.

Now we turn to the applications of Theorems 3.3 and 3.4.

TueoreM 3.5. Quadratic reciprocity of twist derivatives. Let T be a torsion
free Fuchsian group. Let a, B and y be geodesics on the surface H/T. Then
Proof. First we observe that the sums
Y ad ¥
(a#y)X(B#Y) (a#B)X(B#Y)

occurring in the formula (3.2) are uniquely characterized by their support. With
this in mind the left hand side of the identity is given as

. - X + ¥ - X
(a#Y)X(B#Y) . (a#B)X(B#Y) (Y #B) X (a #B) (Y #a) X(a #B)
+ )y - Y :
(B#a)X(y#a) (B#Y)X(y#a)
The vanishing is immediate.
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A natural question is the behaviour of the geodesic length function ; along
an integral curve of t,. In the geometric case, a a simple closed geodesic, the
formula (3.2) shows that (ta)zlﬁ is nonnegative and is actually positive if
a#B = . In particular an intersection a #7v is by definition transverse; hence
if a = y is simple then a #v is empty and the second sum of (3.2) is likewise
empty. The intersection angles 8 , are in the interval (0, 7) and thus the first sum
of (3.2) is positive provided it is nontrivial. The convexity of the functions
along integral curves of ¢, was first observed by Kerckhoff, [13], [14]. This fact is
utilized in his proof of the Hurwitz-Nielsen conjecture. Using the convexity
observation we obtain a result on the nonvanishing of Poincaré series.

THEOREM 3.6. Assume T is finitely generated with infinite limit set, not
necessarily R. Let a correspond to the T -elementary transformatwn A. Let ¢, and
¢, be arbitrary, one from each component of R — (a,, a,), where a,a, is the axis
of A. The Poincaré series of

1

(€ —a) - az)(§ - Cl)(f - 02)

is nontrivial.
Proof. First we consider the case of H/T" having finite area (R is the Limit

A~
set of ). We observe that axes b, b, , of transformations B, € I' exist
converging to ¢,C,. Specifically recall that for H/T of finite area the closed
geodesics are dense in the unit tangent bundle. Consequently a tangent vector of

¢,C, is necessarily the limit of tangents of closed geodesics; axes b, b, , for these

geodesics converge to 0/1\02. Define 6, to be the intersection angle of b, nbz ,» and
@,a,; necessarily 6, converges to 6, the intersection angle of ¢,¢, and d,d,. We
have by Theorem 3.4 for an axis hz of an element B, intersecting &,d, at g,

4Re(t,, OK(b,, a,, ay, b,)) = 2t,cos 0,
el + eb A(B) +1

= . —(els - sin §,sin 6, > ———MB) =3

sin’d,.
The inequality
4Re(t,, OK(c,, a,, a,, c;)) = sin®fy > 0
A~
is obtained on forming the limit of the sequence b, b, ,. We note that

(alcz + ayc, — 4,8, — ¢Cp)

K(&; Claai" as, ) = — (01,01’02’02) E—c) - ‘11)(§ _ az)(f —c,)’

The argument is complete in the case where H/T is of finite area.
The case of T finitely generated with limit set a proper subset of R will be
reduced to the above. An ideal boundary component of H/T is a point or Jordan
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curve. If it is a Jordan curve, there is a unique geodesic in its free homotopy class.
The finite-area subdomain bounded by these geodesics is the Nielsen kernel
NK(T') of H/T. The conformal double of NK(T') is a Riemann surface H/T of
finite hyperbolic area. Indeed, H/T is the metric double of NK(T'). Accordingly
« can also be considered as a geodesic on H/I' and corresponds to a I-elemen-
tary transformation. Expressing the summation for a I" Poincaré series as Xp =
Lr\fXr, we observe that the nonvanishing of the [' sum certainly implies the
nonvanishing of the I' sum. Now the I' Poincaré series of (1/({ — a,)(§ — a,)
(¢ = ¢1)(§ — ¢y)) is nontrivial by the first case of our argument, and the
conclusion follows.

Example 5. Geodesics on Schwarz surfaces. Let A, , . be the hyperbolic
triangle with vertex angles 7/a, m/b and 7/c where a, b and c are positive
integers or infinity and 1/a + 1/b + 1/c¢ < 1. The reflections in the sides of
A, , . generate a discontinuous group of hyperbolic motions. The index 2
subgroup of conformal transformations is the Schwarz triangle group T, , .. The
geometry of a Schwarz surface H/T, , . is very special; its Teichmiiller space
I(T, , .) is a singleton.

The geodesics of the quotient H/T, , . will satisfy trigonometric identities
as a natural consequence of this rigidity. In particular let « and 8 be any two
closed geodesics on H/T, , ; then

(3.3) > V(p)=o.

pEa#B

We have a second class of identities for the group I, «. - The group of the ideal
triangle A, . . is the principal congruence subgroup I'(2) of the modular group.
Let a, B and y be any three closed geodesics on H/T'(2); then
L !
)y £ re ] te sin ,sin 6,
(. (v #B)x(axp) (€7 — 1)
y e + e™

. sin@,sing, = 0
(r.s)e(y#ayx(ap) (€4 —1)
with the notation of (3.2).
We indicate the proof of (3.3). The key observation is that Q(T, , .) = {0).
Now OK(Bt, t, rg,ap) € Q(I, , .), hence vanishes identically. By the calcula-
tion of Theorem 3.3, we note that

> V(p)=(Bt,¢t,rg,a5) 'Re(t,, OK(Bt, t, 15, a5))
pEa#B

and observe that the integrand is trivial.
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4. The symplectic structure of Teichmiiller space

The Weil-Petersson Kihler form w,,, provides an example of a symplectic
form. A vector field X is Hamiltonian for the symplectic form w provided the Lie
derivative L, vanishes. Equivalently w is invariant under the local flow gener-
ated by X. Our main result is that the Fenchel-Nielsen vector fields ¢, are
Hamiltonian for the Weil-Petersson Kihler form. Hence the ¢, are infinitesimal
motions of w,,,. We find in particular that the symplectic geometry of the vector
fields ¢,,...,t is determined by the hyperbolic geometry of the geodesics
a,..., k. Perhaps the correspondence is best illustrated by the cosine formula
@op(ta tg) = L, cazpV(p) and in the computation of the Lie bracket [£,, f5]. The
Lie bracket is evaluated by the law of cosines from hyperbolic trigonometry.
Furthermore, we observe that w,,, being a closed exterior 2-form, is equivalent
to the first and second reciprocity identities.

We begin with a review of the Weil-Petersson Hermitian structure. The
holomorphic tangent space at I of the Teichmiiller space T(I) is represented by
M(T)/N(T'). Multiplication by i is the automorphism J of M(I')/N(T") defining
the complex structure of T(I'). Given p € M(T'), denote by (3/dz(n)) the
associated holomorphic tangent vector. For a complex manifold there is a natural
isomorphism between the holomorphic tangent space and the underlying real
tangent space. A holomorphic vector d/9z is associated to the tangent direction
d/0z + d/0z. With this isomorphism a metric tensor g can be extended to the
(1,0) vectors in the complexification. The Hermitian condition is that the
extension be the real part of a Hermitian product. The Hermitian product for
the Weil-Petersson metric is

5 8\ L
h(mm) - [, PIIPBI0m )", forp,» < M(D).

Accordingly the real symmetric 2-form is

g(p,»)= 2Reh(§?“—),§%—)) ={(p,»),

for p, v € M(T'). And finally the Kahler form is

uplis?) = gl ) = 2R h| s a—%—)) = —?Im"( 7 507 )

for p, v € M(T).

A closed exterior 2-form w is symplectic provided it has maximal rank at
each tangent space. A symplectic form induces an isomorphism {2 between the
tangent and cotangent bundles. If v is a tangent vector then Q(v) = w(v, )isa
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cotangent vector. Similarly if X is a vector field, 2(X) is a differential 1-form. A
vector field X is Hamiltonian provided the Lie derivative Lyw vanishes identi-
cally. By the Cartan equation for the Lie derivative, Lyw( , ) = dw(X, , ) +
d(w(X, )) and as w is symplectic, Lyw( , ) = d2(X). We shall use this char-
acterization: X is Hamiltonian if Q(X) is closed. The Hamiltonian vector fields
form a Lie algebra. In fact for X and Y Hamiltonian vector fields

(4.1) [X,Y] = 2 Y(dw(Y, X)),

from which it is immediate that the bracket [X, Y] is Hamiltonian, [18]. A
symplectic structure induces an isomorphism between the Hamiltonian vector
fields and the closed 1-forms. The isomorphism is used to define a Lie bracket,
referred to as the Poisson bracket, for closed 1-forms. Teichmiiller space is a cell;
consequently in the present situation a form is closed if and only if it is exact.
Finally a function f is called a Hamiltonian potential for the vector field X
provided X = Q ~1(df).

We will now discuss the symplectic geometry of the Weil-Petersson Kihler
form. For the remainder of the section, the Weil-Petersson Kihler form and the
basic isomorphism will be denoted respectively as w and Q. The discussion begins
with the observation that —/, is a Hamiltonian potential for the vector field ¢,.

LEmMma 4.1. Let a be a geodesic on H/T'. Then
Q(t,) = —di,.

Proof. By definition £(t,) is the cotangent vector w(¢,, ) = g(J¢,, ), hence
is the Riemannian dual of Jt,, The tangent vector Jt, is given by
—(1/7)(Im 2)2@,, whose dual (see section 1) is — —72;(-)“ = —dl,.

In the following the Kihler form w is evaluated in terms of the hyperbolic
geometry of closed geodesics on H/T.

LEmMmaA 4.2. Let o and B be geodesics on H/T'. Then
ot ty) =tlg= X V(p).

pEa#f

Proof. By the above lemma, w(t,,t3) = —tgl,. The second equation is
Theorem 3.3.

The above result suggests that the Kéhler form is completely determined by
the geometry of geodesics. This is valid provided the Fenchel-Nielsen vector
fields everywhere span the tangent space. By Lemma 2.3 it suffices to show that
the differentials dl, everywhere span the cotangent space. This last statement is a
classical result and appears in the work of Fricke-Klein [9], Fenchel-Nielsen [8],
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Ahlfors [1] and Keen [12]. Now given this, we use the reciprocity identities to
show that w is a closed exterior 2-form, providing a new proof that the metric is
Kihler. It suffices by the above to consider w evaluated on the Fenchel-Nielsen
vector fields. We begin with

w(t,, t) + w(tg, t,) = tlg + tl, = 0,

a consequence of Lemma 4.2 and the linear reciprocity identity; hence w is an
exterior 2-form. From the definition of the exterior derivative we have

do(t, tg, t,) = t,o(tg, t,) — tgoo(t,, £,) + t,0(ts, t5)

—o([tas ], 1)) + ([t 1] ) = ([t 1] 1)
We evaluate, using Lemmas 4.1 and 4.2
do(t,, tg, t,) = ttgl, + tat. 1, + .21

- [ta’ tﬁ]lv + [ta’ tv]lﬂ - [tﬁ’ tv]lvf’

and the last expression vanishes by the quadratic reciprocity identity. We
conclude that w is closed.

A natural question is to consider the relation if any between the vector fields
t, and the Killing vector fields of the Weil-Petersson metric. We provide an
answer in the geometric case: a simple. It is necessary to review certain
elementary facts concerning vector fields. A vector field X is complete provided
it can be integrated; it is natural to interpret completeness as a growth condition
at infinity. A complete vector field X is Killing for a Riemannian metric g,
provided the integrated transformations are g-isometries. Similarly a complete
vector field X on a complex manifold M is analytic provided the integrated
transformations are biholomorphisms of M. Now the geometric construction for
the Fenchel-Nielsen deformation in the case of a simple geodesic a defines the
integrated transformation of ¢,. The vector fields ¢,, a simple, are complete. The
following theorem is standard.

TueoreM 4.3. Let M be a Kdihler manifold with metric g and associated
Kdhler form w. If X, a complete vector field, is g-Killing and «-Hamiltonian,
then X is analytic.

COROLLARY 4.4. Let o be a simple geodesic on H/T. Then t, is not a Killing
vector field for the Weil-Petersson metric.

Proof. From the above it is sufficient to show that ¢, is not analytic. Royden
established that the full group of biholomorphisms of T(T') is the Teichmiiller
modular group, a discrete group, [16]. Hence the only complete analytic vector
field of Teichmiiller space is the trivial vector field.
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Fricke-Klein established that local coordinates for T(I') are given by an
appropriate choice of geodesic length functions I,. Coordinates of this type have
been used for many calculations in Teichmiiller theory. A characterization of the
complex structure for T(I') in the length coordinates has not been obtained.
Nevertheless the expression for the Kihler form is elementary. Let [,,..., [, be
geodesic length functions giving local coordinates at a point of Teichmiiller
space; consider the Fenchel Nielsen vector fields t;=— QY dlj), 1<j<n.

LEmma 4.5, [23]. Let 1,,..., 1, provide local coordinates for T(T). Let
w;, = w(t;, t;) and denote by (W;,) the inverse of (w;,); then in the local
coordinates 1,,..., 1,
W= — Z “,]kdl]/\ dlk.
i<k
In [23] this formula is used to determine the volume of the moduli space of
2

once punctured tori; the result is T,

Now we consider a characterization of the Lie algebra of Hamiltonian vector
fields. First we note a result of Fricke-Klein: geodesic length functions [,,.. ., L,
can be chosen such that the induced map of T(T') to R? is a real analytic
embedding. Using this, we have the following, as usual: ¢;=— Q~'(dl),
1<j<gq

THEOREM 4.6. A smooth vector field X on T(T') is Hamiltonian if and only
if there exists a smooth function f: R? - R such that X = %(11,. s bt
' i

Proof. Teichmiiller space is a cell; thus X is Hamiltonian if and only if Q(X)
is exact. The exactness of 2(X) is equivalent to the existence of a smooth .
function f with Q(X) = df. The function f can be expressed as the composition

flys- .., 1,); the differential df is fdl Finally by Lemma 4.1, Q( gf dl. )
Xj
- %tj, establishing the result.
i
Finally we consider the Lie bracket [¢,, #5] of the Fenchel-Nielsen vector
fields ¢, and ;. The formula reveals a Lie algebra 9, the twist lattice, defined
over the integers. We find the twist lattice to be determmed by the isomorphism

class of the Fuchsian group TI'.

Definition 4.7. Given A € T, hyperbolic, define the normalized Fenchel-
Nielsen vector field T, = 4sinh [, /2 t,. The twist lattice 7 is the Z span of the
vector fields T,, A € T, hyperbolic.

Note that by Lemma 4.1 the Hamiltonian potential for T, is the function
4|tr A|. Because of the elementary formula [ fX, kY] = fk[X, Y] + f(Xk)Y —
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k(Yf)X for f, k smooth functions and X, Y smooth vector fields, the Lie bracket
for Fenchel-Nielsen vector fields is completely determined by its restriction to the
lattice 9.

THEOREM 4.8. The twist lattice 9 is a Lie algebra over Z. Given A, B € T,
hyperbolic, let § be those elements C of T such that the axis of C ~'AC intersects
transversely the axis of B. Then

(4.2) [Ty, T3] = )} Lig— Tap

Ce(ANI/(B)
where A, = C~'AC or A, = C 'A7!C is determined such that g will lie to the
left of its axis.

Proof. We begin with trigonometry; consider the following figure.

AB

Ficure 1

Let g, r and s be the rotations thru angle 7 at the indicated intersections. We
obtain the expressions

A=1rq, B=sq, AB=rgsq and AB~ ! =rs.

The axes of these transformations are labeled and the sense of each is indicated.
The distance between consecutive vertices on an axis is one-half the translation
length. Using the law of cosines we have

cosh l, /2cosh l5/2 — cosh 1,5 /2
sinh l, /2sinh I5/2

cos 0 =



' DEFORMATIONS OF A HYPERBOLIC SURFACE 233

and
cosm — 0 = cosh l, /2cosh l5/2 — cosh l,5-1/2
sinh 1, /2 sinh /2
or
(4.3) 9cos § = S0P lap-1/2 — cosh L5/2

sinh 1, /2sinh 15/2
Now using (4.1) and Lemma 4.2, we have

[T,,Tz] = —Q~Y(d(16sinh I, /2 sinh lg/2t,15));
then by Theorem 3.3, and (4.3),

= —89‘1( Y. dfcoshl, z-1/2 — cosh lAcB/z))
Ce(ANI/(B)

—4Q- 1( Zg sinh ly p-1/2dl; g1 — sinh 1, ;/2 dlA°B)
Ce(ANI/(B)

and finally by Lemma 4.1,

= Z TAOB -1 TACB‘
Ce(A)\I/(B)

That J is a Lie algebra over Z is an immediate consequence of the formula.

Remarks. The separation property of axes in a group I is known to be a

- topological invariant; this fact is suggested by formula (4.2). The Lie bracket

[T,, Tg] is evaluated by an arbitrary choice of T and consideration of the

transformations A, B € T. We conclude that the twist lattice is an isomorphism

invariant of I'. In particular if T is torsion free, ¥ is an invariant of the

fundamental group. Finally, by considering the Hamiltonian potentials 4|tr A|,
we can show that the R span of 9 is infinite dimensional.

The vector fields t,, T, and the Lie bracket may also be considered for
finitely generated groups where H/T has infinite area. Many of the present
formulas extend to this case by virtue of the doubling construction discussed in
the proof of Theorem 3.6. This is possible even though the Teichmiiller space
does not have a complex structure.
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