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Abstract

In 1958, Weil introduced a Hermitian metric for the deformation
space of Riemann surfaces based on the Petersson pairing for
automorphic forms. Investigations include the symplectic geometry,
topology of moduli space of Riemann surfaces, metric space
geometry, as well as the analytic/algebraic geometry of curvature,
characteristic classes and local index formulas.
Applications: proofs of projectivity of compactified moduli, Nielsen
realization, description of cycles/cocycles on moduli space,
positivity of line bundles, local index formulas for ∂, geometry of
quasi Fuchsian manifolds, rigidity of the mapping class group, a
Witten-Kontsevich solution, arithmetic intersection theory,
dynamical and statistical quantities for surfaces, and description of
the complete Kähler-Einstein metric for moduli space.
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References

This presentation is an effort to give highlights of understanding of
Weil-Petersson geometry. Material is presented without references
and not especially following the order of discovery. For recent
results begin by Googling for webpages, using Arxiv.org or clicking
on the names - Jeffrey Brock, Zeno Huang, K. Liu & X. Sun & S.
T. Yau, Howard Masur, Curt McMullen, Maryam Mirzakhani,
Robert Penner, Leon Takhtajan, Richard Wentworth, Michael
Wolf, Peter Zograf, and the author. The introduction of the
following contains an overview current up until 2001

Scott A. Wolpert, Geometry of the Weil-Petersson completion
of Teichmüller space. In Surveys in Differential Geometry VIII:
Papers in Honor of Calabi, Lawson, Siu and Uhlenbeck, pages
357–393. Intl. Press, Cambridge, MA, 2003.
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Conformal structure & variation of a Riemann surface

A conformal structure is defined by an atlas of charts {zα}.
A variation of conformal structure is defined by:

varying chart overlaps, or

gluing in an elementary family, or

in general by a vector field on the universal cover.

Examples of elementary families come from lower genus or the
collar plumbing family {zw = t} → {t} - the family of complex
hyperbolas over the t-disc.
Interchanging primitives, all variations can be described by
Beltrami differentials - tensors µ of type ∂

∂z ⊗ dz , ‖µ‖∞ < 1,
prescribing new charts {wα(zα)}, with dwα = (wα)zα(dzα + µdzα)
and the charts local solutions of wz = µwz .
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Variation of hyperbolic structure

The corresponding variation of hyperbolic structure is determined:

by the Ahlfors-Bers approach of solving ∂f = µ on the upper
half-plane H, and ∂f = µ(z) on L,

or

by pulling back a metric ds2
0 and solving the prescribed

curvature equation D0f − K0 = e2f with e2f ds2
0 hyperbolic, or

for finite area hyperbolic metrics, Wolf describes: for D the
hyperbolic Laplacian (spectrum ≤ 0), µ = φ(ds2)−1 with
φ ∈ Q, a holomorphic quadratic differential, the hyperbolic
metric is

dσ2 = φ+ (H+ L)ds2 + φ

for the solution of D logH = 2H− 2L − 2 and HL = |φ|2.
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General setting

R a Riemann surface of genus g with n punctures with hyperbolic
metric ds2. T the Teichmüller space of homotopy marked
conformal or equivalently hyperbolic structures. T is a C manifold
- with Bers embedding realize as a domain in C3g−3+n.
For R with canonical bundle κR , the space of infinitesimal
deformations is the Čech group Ȟ1(O(κ−1

R )) with dual space Q(R)
- the R-holomorphic quadratic differentials.

Definition

Weil introduced the Hermitian cotangent pairing

〈φ, ψ〉 =

∫
R
φψ (ds2)−1 for φ, ψ ∈ Q

with dual the Weil-Petersson (WP) metric.
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WP basic properties

Metric is Kähler, incomplete, negative sectional curvature
with sup = 0 (except in dim = 1) and inf = ∞.

Mapping class group MCG = Homeo(R)/Homeo0(R) acts
naturally on T by composition with the marking
homeomorphisms. Quotient M = T /MCG is the classical
moduli space of Riemann surfaces. WP metric is MCG
invariant - provides a finite diameter, finite volume geometry
for M; completion is Deligne-Mumford compactification.

Metric in higher genus limits under degeneration (pinching
short geodesics) of Riemann surfaces to lower genera metrics.

Metric is natural with respect to unbranched surface covers.

Multiple connections and interplays between WP geometry
and 2-d & 3-d hyperbolic geometry.
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Geodesic-length functions: a fundamental tool

For a closed curve α on surface - length `α of unique R geodesic in
free homotopy class defines a function on T . For the pairing of
WP gradients have

〈grad `α, grad `β〉 =
2

π
`αδαβ + O(`2α`

2
β) for α, β simple disjoint.

Riera gives an exact pairing formula as infinite sum of lengths of
geodesics connecting α&β. For the second derivative have

2`α ῭
α[µ, µ]− ˙̀

α
2
[µ]− 3 ˙̀

α
2
[iµ] ≥ 0, and is O(`3α‖µ‖WP).

Applications. `α, `
1/2
α are convex along WP geodesics. With

negative curvature, T is a length space - each pair of points is
connected by unique length minimizing path.
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Fenchel-Nielsen (FN) coordinates

A pair of pants is a g = 0 hyperbolic surface with three geodesic
circle boundaries. Same length pants’ boundaries can be abutted to
form larger hyperbolic surfaces. The abutting parameters are: `α
the boundary length; τα the relative displacement between circles.

Theorem (Fenchel-Nielsen coordinates)

For a maximal set of disjoint simple closed geodesics (a pants
decomposition) the parameters {(`α, τα)}3g−3+n

α=1 provide a real
analytic equivalence of T to (R+ × R)3g−3+n

The subset {0 < `α < c , 0 < τα ≤ `α} is a MCG rough
fundamental domain. The augmented Teichmüller space T is
defined: for all possible partitions extend parameter ranges with
`α = 0 (with τα undefined) specifying a pair of hyperbolic cusps.
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Augmented Teichmüller space properties

T is non locally compact; T /MCG is topologically the
Deligne-Mumford compactification.

For σ = {α}, a collection of disjoint simple closed geodesics,
the locus T (σ) = {`α = 0}α∈σ is a stratum of T and is a
product of lower-dimensional Teichmüller spaces.

T is the WP completion and also is a length space.

Strata are geodesically convex with distance to T (σ) given as

dT (σ) = (2π
∑

α `α)1/2 + O(
∑

α `
5/2
α ).

For J the complex structure and gWP;T (σ) the WP metric on
T (σ), then near the stratum, in terms of {grad `∗}

gWP = 2π
∑
α∈σ

(d`1/2
α )2 +(d`1/2

α ◦J)2 + gWP;T (σ) + O(dT (σ)).
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Symplectic geometry, twists & lengths

For simple closed geodesics - variation of the displacement
parameter τα defines the twist vector field tα on T . The
fundamental twist-length Kähler form duality

d`α = 2ωWP( , tα)

presents `α as a Hamiltonian. Calculation in universal covers gives

tα`β = 2ωWP(tα, tβ) =
∑

p∈α∩β

cos θp and

2t2
α`β = coth `β/2 (sin θ)2 for a single intersection.

Positivity of the second derivative is an instance of earthquake
convexity. Kerckhoff uses convexity for Nielsen realization.
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d` ∧ dτ and dL ∧ dL

Twist-length duality and symmetries provide for FN coordinates

2ωWP =
∑
α∈σ

d`α ∧ dτα

an essential formula for Mirzakhani’s integrations. A surface with
cusps is also a union of ideal triangles. Logarithms of edge lengths
between horocycles provide global coordinates for T . Penner
provides the lambda-length formula

2ωWP = −
∑

triangles

dL0 ∧ dL1 + dL1 ∧ dL2 + dL2 ∧ dL0

and uses for integrating and describing a Poincaré dual to ωWP .
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Mirzakhani’s investigations

Mirzakhani generalizes McShane’s identity∑
simple geodesics α

1

e`α + 1
=

1

2
, for g = 1, n = 1,

describes a recursive integration scheme, and applies symplectic
reduction for - intersection calculations on M, and a solution of
Witten-Kontsevich. Her recursion for moduli space volumes for
surfaces with prescribed boundary lengths provides for g = 1,

VL =
π2

12
+

L2

48
, VL1,L2 =

π4

4
+
π2(L2

1 + L2
2)

12
+

L2
1L

2
2

96
+

(L4
1 + L4

2)

192
.

And in general the number of simple closed geodesics of length at
most Λ is asymptotic to Λ6g−6+n.
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Sectional curvatures

Calculation of curvature begins with the perturbation expansion

dAε = (1− ε2(1 + 2(D − 2)−1)µµ+ O(ε3)) dA

for µ = φ(ds2)−1. WP curvatures satisfy: sectional < 0;
holomorphic sectional < −1/(2π(g − 1)); and the dual metric is
Nakano positive. Current investigations involve specific sectional
curvatures. The Hermitian curvature tensor satisfies for gradient

fields λ∗ = grad `
1/2
∗ ,

R(λα, λα, λα, λα) =
3

16π3`α
+ O(`α)

and for disjoint simple geodesics not all the same

R(λα, λβ, λγ , λδ) = O((`α, `β, `γ , `δ)
1/2).
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Analytic geometry

Liu-Sun-Yau use the negative Ricci form as a reference metric for
studying the complete Kähler-Einstein metric on T and show

Theorem (Liu, Sun & Yau)

The Teichmüller-Kobayashi, Carathéodory, Bergman,
Kähler-Einstein, McMullen, asymptotic Poincaré, and negative
Ricci are all comparable metrics.

Comparability brings together properties of the classical domain
metrics. A range of applications follows.
Takhtajan-Zograf investigate the Quillen metric for determinant
index bundles for ∂ acting on smooth dz⊗k -tensors, k > 1, with the
Selberg zeta function Z (s) for the determinant of the Laplacian.
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Takhtajan-Zograf index formulas & Selberg zeta values

For the Hermitian connection curvature Θ(k) for the Petersson
pairing on holomorphic dz⊗k -tensors then

c1(det ind ∂k) =
i

2π
(Θ(k) − ∂∂ log Z (k)) =

6k2 − 6k + 1

12π2
ωWP .

A counterpart formula is developed for surfaces with cusps and
holomorphic factorizations are given for ∂∂-primitives for ωWP .
Freixas i Montplet studies arithmetic intersection pairings and
analytic hyperbolic geometry to find for three-pointed spheres

log Z ′(1) = 4ζ(−1) + log 2π +
10

9
log 2.
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The augmented Teichmüller space CAT (0) geometry

T is CAT (0), a simply connected, complete generalized non
positively curved length space. Distances between sides of a
geodesic triangle are bounded by corresponding distances for a
Euclidean triangle with corresponding side lengths.

The pants graph P has vertices for topologically distinct pants
decompositions and unit-length edges between vertices
differing by a single simple move. Brock’s Theorem: gWP is
quasi isometric to P - describes the large-scale geometry.
T is a stratified metric space with geodesically convex strata.
Geodesics at most change strata at endpoints.
T is closed convex-hull of maximally pinched surfaces (unions
of thrice-punctured spheres). Geodesics to maximal surfaces
are dense. T is infinite polyhedron. Masur-Wolf Theorem:
MCG is the full WP isometry group.
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of thrice-punctured spheres). Geodesics to maximal surfaces
are dense. T is infinite polyhedron. Masur-Wolf Theorem:
MCG is the full WP isometry group.
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Geodesics beginning at the augmentation

Geodesics on T have well defined endpoints. Geodesic-length
functions are identically zero or strictly increasing on geodesics
beginning at the augmentation. For unit-speed beginning geodesics
the Alexandrov angle is defined by limiting for the Law of Cosines.
The Alexandrov tangent cone ACp is the set of geodesics
beginning at p modulo the relation of same speed and zero angle.
ACp has the structure of a cone in an inner product space. For a

suitable collection of geodesic-lengths (`
1/2
α , `

1/2
β ), initial derivatives

provide a mapping Λ from ACp to R|σ|
≥0 × TpT (σ), for σ = {α}.

Theorem: The mapping Λ from ACp to R|σ|
≥0 × TpT (σ) is an

isometry of cones with restrictions of inner products. A geodesic

with initial derivative ˙̀
α

1/2
(0) vanishing is contained in the

stratum {`α = 0}.
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More behavior of geodesics

The augmentation set has the local structure of an orthogonal
product of geodesic hyperplanes. Yamada introduces formal
reflections in the proper T strata, and constructs an infinite
development D(T ) (a Coxeter complex) - a simply connected
CAT (0) space, now with geodesics having infinite prolongations.
Yamada shows the space is finite rank in sense of Korevaar-Schoen
and applies their harmonic map existence to give a proof of
Daskalopoulos-Wentworth Theorem: For an isometric action on
T of the fundamental group of a compact Riemannian manifold,
either there is an equivariant harmonic map of universal covers or
an equivalence class of rays is fixed by the action.
Also, dynamical properties of infinite geodesics are being
investigated. There are geodesics dense in the tangent bundle.
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Uniformly distributed geodesics and length variation

On a hyperbolic surface R, the closed geodesics {γ | `γ ≤ L}
become uniformly distributed as L becomes large. The
unit-tangents limit to the uniform distribution in the unit-tangent
bundle. The first derivative of length ˙̀

γ [µ] for µ = φ(ds2)−1 is
given by an integral of φ along γ; the first derivative of log length
of a uniformly distributed sequence is given by the mean of φ on
the unit-tangent bundle; the mean is zero. Thurston combines
these observations and geodesic-length convexity to find for a
uniformly distributed sequence the second derivative
lim{γ} D2 log `γ [µ, µ] converges and defines a Riemannian metric
for T - the random geodesic metric.
Theorem: grandom geodesic = 4/(3area(R)) gWP .
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quasi Fuchsian groups

A pair (R,S) ∈ T ×T determines a hyperbolic 3-manifold Q(R,S)
with R t S its conformal boundary at infinity. For Q(R,S) = H3/Γ
- the group Γ acts as PSL(C) transformations on Ĉ, the boundary
of hyperbolic space, with limit set Λ(Γ) a topological circle of
Hausdorff dimension Hdim(Γ). The convex core C (R,S) is the
smallest convex subset of Q(R,S) carrying the fundamental group.
Brock’s volume comparison: dWP(R,S) and vol(C (R,S)) are
comparable in the sense of quasi-isometries.
The Liouville action functional F [ϕ] =

∫
R eϕ + |ϕz |2dzdz is a tool

for understanding the PSL(C)-structure uniformization of R.
Takhtajan-Teo holography: For a test function ϕ, the Liouville
action F [ϕ] gives the ϕ-renormalized volume of Q(R,S).
McMullen-Bridgeman-Taylor Theorem: The initial second
derivative satisfies D2 Hdim(Γ)[µ, µ] = gWP/(3area(R)).
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