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Convexity of geodesic-length functions: a reprise

Scott A. Wolpert

Abstract

New results on the convexity of geodesic-length functions on Teidlien”
space are presented. A formula for the Hessian of geodesic-length is presented.
New bounds for the gradient and Hessian of geodesic-length are described. A
relationship of geodesic-length functions to Weil-Petersson distance is described.
Applications to the behavior of Weil-Petersson geodesics are discussed.

1. Introduction

Inthis research brief we describe a new approach to the work [Wol87](esp. Secs. 3 and
4), as well as new results and applications of the convexity of geodesic-length func-
tions on the Teichmller spaceZ. Our overall goal is to obtain an improved under-
standing of the convexity behavior of geodesic-length functions along Weil-Petersson
(WP) geodesics. Applications are presented in detail forGAg(0) geometry of

the augmented Teichafier space. A complete treatment of results is in prepara-
tion [Wol04]. Convexity of geodesic-length functions has found application for the
convexity of Teichnuiller space [Bro02, Bro03, DS03, Ker83, Ker92, McM00, SS01,
SS99, Wol87, Yeu03], for the convexity of the WP metric completion [DW03, MW02,
Wol03, YamO01], for the study of harmonic maps into Teiakifai' space [DKWOQO,
Yam99, YamO01], and for the action of the mapping class group [DW03, MWO02]. We
consider marked Riemann surfadesvith complete hyperbolic metrics possibly with
cusps and consider the lengths of closed geodesics. The length of the unique geodesic
in a prescribed free homotopy class provides a function on the Taitlem$pace.
Specifically foro a closed curve oI, let /5(R) denote the length of the geodesic
homotopic tog; more generally forr a geodesic current [Bon88], 1€}, (R) denote

the total-length of the geodesic current fr

A closed geodesio on R determines a cyclic cover d® by a geometric cylinder
€. For/ the length ofo the geometric cylinder is representedis < t — €'t > for
logt

H the upper half-plane with coordinattgfor w = exp(2ri =) the cylinder is further

represented as the concentric annuﬂaSZT < |w| < 1} in the plane. We discovered
in [Wol87](Sec. 4) that the potential operator for the Beltrami equatio#’ as diago-
nalized by theS! rotation action of the cylinder and that the potential equation can be
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solved term-by-term for the corresponding Fourier expansions. The special properties
for the potential theory generalize the properties for the function theory of the cylin-
der. For instance holomorphic differentials Bnlifted to 4", admit Laurent (Fourier)
expansions. The WP dual of the Hessian/gf a quadratic form for holomorphic
guadratic differentials oRR, has Hermitian and complex-bilinear componeditsgo-
nalizedby the terms of the corresponding Laurent expansions [Wol87](see Lemmas
4.2 and 4.4.) We further found that the contribution for a single Laurent term is a pos-
itive definite form. At this time, we have simplified the considerations of the Hessian
and are now able to effect a straightforward comparison to the Petersson pairing for
holomorphic quadratic differentials [Wol04]. The simplified considerations provide
the basis for an improved understanding of the Hessian and of convexity. In the fol-
lowing paragraphs we outline the approach and results. We close the discussion by
providing several applications complete with proofs.

2. The Hessian of geodesic-length

We introduce foru a geodesic current a natural functi@iy on R We begin with
the geometry of the space of complete geodesics on the hyperbolic planél #ar
upper half plane with boundar& = RU{»}, the space of complete geodesics on
H is given as¥ = R x R\ {diagonal}/{interchang@. A point p of H is at finite
distanced(p, o) to a complete geodesig and soe 2(P.9) defines aGaussianon

¢. The natural area measure @his w = (a—b)~?dadbin terms of theendpoint
coordinates(a, b)/ ~. The measure 24(P.9) w is finite for%. Finiteness is noted as
follows. A pointzof H, its conjugate, and the boundary poini{®, b) have cross ratio
cr(za,b) = \S;\D\EE\' The simple inequalitgr?(z a, b) > e 24(2ab) js established by
considering the point tripl€i,a, —a). Finiteness of the measure now follows from
the inequalitye240:3% ) < (1+a?)~1(1+ b?)~1dadbfor the point triple(i, a, b). A
geodesic currents for R naturally lifts to the upper half plane; the lift is a positive
measuralu on the spac&’ of complete geodesics. F&represented as the quotient
H/T the integral

Pu(p) = [ e ®P9)du(0) (2.1)

defines al -invariant function onH, the mean-squared inverse exponential-distance
of p to u. Finiteness of the integral is established by compadpgto w. The con-
struction forP, is motivated by the construction for the classical Petersson series
representing the differentia/, of the geodesic-length o7 [Gar75, Gar86]. The
reader can check that — [P, is a continuous mapping from the space of geodesic
currents to the space of continuous functionsRrThe central role oP, in studying
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geodesic-length functions and the total-length of geodesic currents is discussed and
demonstrated below.

From Kodaira-Spencer deformation theory the infinitesimal deformatiofsavé
represented by the Beltrami differential¢’(R) harmonic with respect to the hyper-
bolic metric [Ahl61]. A harmonic Beltrami differential is the symmetric tensor given
asg(ds’) ! for ¢ a holomorphic quadratic differential with at most simple poles at
the cusps andls’ the hyperbolic metric tensor. AR the differential on.7 of the
geodesic-length of is bounded fov € J#(R) as

8
d6o(v)] < [ IV PodA

for dAthe hyperbolic area element and from applying the inequéli)?| < 4e~24(z0=)
and the formula of F. Gardiner [Gar75]. By taking limits the integral bound is gen-
eralized to the total-length of laminations. Ahlfors noted [Ahl61] for second-order
deformations defined by harmonic Beltrami differentials that the WP Levi-Civita con-
nection is Euclidean to zeroth order in the following sensel -fvariant Beltrami
differentialv onH determines a one-parameter family as follows. For the complex pa-
rametere small there is a suitable self-homeomorphitfrof H satisfyingf = evf£.

The homeomorphisni? serves to compare the quotiefig™ andH/féol o (&)L,

For a basis of harmonic Beltrami differentials, . .., vy and small complex param-
eterse, andv(g) = ¥ £jv; the associatiorfer, . .., &) to H/fVE o[ o (f())~L in
effect provides a local coordinate far. Ahlfors found for a basis of harmonic Bel-
trami differentials that the local coordinates f6f are normal: the first derivatives

of the WP metric tensor vanish at the origin [Ahl61]. The observation is used in the
calculation of the WP Riemannian Hessiér(v, v).

Our analysis of the Hessian consists of three considerations. We consider the met-
ric cover of the cylindefs by an infinite horizontal strip” in C with the St rotation
action of the cylinder lifting to afR action by Euclidean translations of the strip. We
purposefully normalize the covering” so that a Euclidean horizontal translation by
d is a hyperbolic isometry with translation lengéh First, we consider the formula
for the variation of the translation lengthof the covering of¢’. Forz the complex
coordinate for the strip anéf the suitable self-homeomorphism of the translation
equivariance provides thdf = f&(z+ ¢) — f€(z). We find for v a harmonic Bel-
trami differential defining a deformation and a fundamental domain for the metric
covering of.¥ to ¥ the first variation

é:lRe/ Efzﬁidzdz_:lRe/ vidzdz
m Jzde noJz
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and the second variation
- 1Re/ & ttidedz— gRe/ v, idzdz
nm Jzde? n o Jz

for f a suitable solution of the potential equatiéy= v. The second variation for-
mula should be compared to the considerably more involved formula of Theorem 3.2
of [Wol87]. Second, we consider the Fourier expansion oh. relative to the trans-
lation group of the covering t&. From Corollary 2.5 and formulas (4.1) of [Wol87]
the potential equatioriz = v admits a term-by-term solution relative to the Fourier
expansion ofv. In particular for the Beltrami differential with series expansion

. = 27
v=—4sirflz > ane, £ = =
we find that
eErIZ*l 7Z|:| eEnZ+l
fZ_Z(éDZangn_l—e za”£n+1)'

The quantityf, is a linear form in the Fourier expansion wf The expansion enables
calculation of the above variation integral term-by-term and the calculation is a special
feature for harmonic Beltrami differentials. Third, we simplify the resulting term-by-
term expressions to obtain an exact formula in terms of the operator

Agl =2 [ Epa

for quadratic differentialsp invariant byt — €‘t on H with coordinatet, and the
Hermitian form

Q(B,6>:/ B(S(Imt)ziédtdt_.

1<|t|<el
In [WolI87](Thrm. 2.4) we found thaf\[¢] is associated to the Eichler integral ¢f
The overall resulting final formula

. 32 16, ~
t=—QAA - —QAA) (2.2)

is the replacement for the intricate formulas of Lemmas 4.2 and 4.4 of [Wol87]. The
formula can be compared to the formula of Gardiner for the first variation [Gar75].
Bounds for the Hessian df; in terms ofP; and the Petersson product can be derived
by comparing the two Hermitian forms

i dtdt
A A) and 2 mp)4 L &L
Q(AA) 1<\t\<ef|¢| (Imt) 3Tt

where(Imt)~1jt| is comparable to the exponential-distance of the imaginary axis.
The bounds are straightforward since the Hermitian forms are diagonalized by the
Fourier expansion op.



Proceedings file 5

3. Convexity results

We find that for the total-length, of a geodesic current its complex Hessian.gn a
Hermitian form ons#(R), is bounded in terms of the integral pairing with facRy
and hyperbolic area element

_ 3 5 _
/Rvp]P’“dAg Eaaéu(v,p) < 16/Rvp]P’“dA

for v, p € #(R). Since/gvpdAis the WP pairingv, p)
comparison of Hermitian forms

wp We have the following

3 =
(o Pu)wp < 75990 < 16(, Pu)yp
The strict convexity of geodesic-length functions and of the total-length of geodesic
currents is an immediate consequence of the positiviti,of We find further conse-
guences of our calculations and considerationBf The first and second derivatives
of total-length</, , £, actually satisfy general comparisons

|dey (V)dEy (V)| < £y lu(v,v)+Luly (v, V) (3.1)

and
8|00y (V)OLy (V)| < £330y (v, V) +£,00¢)(V,V). (3.2)

The complex Hessian and WP Riemannian Hessian of a total-lefjg#iso satisfy a
general comparison
300, < 1, <309¢).

A basic consequence of the formulas is the observation that the first and second
derivatives of a geodesic-length are bounded in terms of the supremum norniPgf
onR. The magnitude oP, can in turn be analyzed in terms of th@ck-thindecom-
position of the surface [Wol92, I, Sec. 2]. Fora simple closed geodesic a suitable
decomposition oR has three regions) thick ; ii) cusps andhin collars not intersect-
ing o; andiii) thin collars whicho crosses. For the first region sinee?d(P.9) satis-
fies a mean value estimate and the injectivity radius is uniformly bounded below the
supremum of?, is bounded by thé.1-norm||Ps|| = %¢,. For the second region the
distance tao is at least the distana®to the region boundary and the supremum can
be bounded using the general inequakfp > ¢ bounding the exponential-distance
and the injectivity radius for a collar or cusp [Wol92, II, Lem. 2.1]. For the third
region the supremum df, is bounded in terms of the reciprocal injectivity radius,
which from the general inequality is bounded &y/2 sinceo crosses the collar.
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We accordingly find in complete generality that there exists constants, inde-
pendent oR such that the gradient of the geodesic-length of a simple curve is bounded
in terms of the geodesic-length itself

(gradty, gradls ), p < C.(lg + (5€7/?) (3.3)
and for the relative systolgyse (R), the least (closed) geodesic-length farthat

Cox (SYSel (R)AIME 7 () < 30Lg < C(1+Lg€/2)( ) (3.4)

WP

In brief the first and second derivatives of a simple geodesic-length relative to the WP
metric are universally boundedin terms of the geodesic-length and the relative systole.
The bound (3.3) can be compared to the familiar universal bdjdtd ||t < 2¢, for
the differential relative to the Teichuliér metric [Gar75]. Thalegeneratiorof Py
can be further analyzed in terms of ttiéck-thindecomposition [Wol92, Il, Sec. 2].

For the study of geodesic currents and applications of geodesic-lengths it is desir-
able to have bounds (dependent Bhproportional to the geodesic-length. We find
for compact subsets of the moduli space of Riemann surfaces that there are general
uniform bounds. In particular we have the following.

Theorem 3.1. Given.7, there are functionsicand @ such that for a curver
c1(sysel(R) lo <Py < Co(sysel(R) lo

with ¢1(s) an increasing function vanishing at the origin ang(s) a decreasing func-
tion tending to infinity at the origin. For the total-length of a geodesic currgnt

Cl(sy$el(R))€H< ’ >Wp§ (356“ < CZ(SY$9|(R))€“< ) >WP'

In summary for compact subsets of the moduli space of Riemann surfaces the Hessian
of geodesic-length is proportional to the product of the geodesic-length and the WP
pairing.

The first-derivative second-derivative comparison inequalities (3.1), (3.2) provide
for new convexity results.

Theorem 3.2. For the closed curveds, .. ., a, their geodesic-length sutfiy, + - - - +
(g, satisfies: (g, + -+ £q,)Y/? is strictly convex along WP geodesidsg((q, +
-+ Lq,) is strictly plurisubharmonic, andtq, + - - -+ £q4,) " is strictly plurisuper-
harmonic.

S. K. Yeung showed with a detailed analysis of the first-derivative and second-
derivative that({q, + - - - +{q,) 2, 0< a < 1, is strictly plurisuperharmonic [Yeu03].
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He applied the result to study the behavior of of line bundleslahdections over7.

C. McMullen found and used that afy! has complex Hessian uniformly bounded
relative to the Teichmiler metric [McMOO, Thm. 3.1]. The present result offers an
elaboration: a suntlq, + - --+ £q,) 1 is plurisuperharmonic with complex Hessian
bounded as

—05((6(11 +-- '+€an)7l) < (205(6(11 +--- +éan))(€al +--- +éan)72. (35)

4. TheCAT(0) geometry of the augmented Teichraller space

Applications of geodesic-length convexity are provided by considering the augmented
Teichmiller spaceZ with the completion of the WP metric [Abi77, Ber74, Mas76].

.7 is the space of marked possibly noded Riemann surfageis a non locally com-

pact space [Abi77, Ber74].7 is a CAT(0) metric space [DW03, MW02, Wol03,
YamO01]. The geometry oEAT(0) spaces is developed in detail in Bridson-Haefliger
[BH99]. For a metric space@eodesic trianglés prescribed by a triple of points and a
triple of joining length-minimizing curves. A characterization of curvature for metric
spaces is provided in terms of distance-comparisons to geodesic triangles in constant
curvature spaces. For@AT(0) space the distance and angle measurements for a tri-
angle are bounded by the corresponding measurements for a Euclidean triangle with
the corresponding edge-lengths [BH99, Chap. Il.1, Prop. 1.7].

7 with the completion of the WP metric issiratifiedunique geodesic space with
the strata intrinsically characterized by the metric geometry [Wol03, Thm. 13]. The
stratum containing a given point is the union of all open length-minimizing segments
containing the point. To characterize the strata structure in-the-large consider a ref-
erence topological surfade for the marking andC(F), the partially ordered se¢he
complex of curvesA k-simplex ofC(F) consists ok+ 1 distinct nontrivial free homo-
topy classes of nonperipheral mutually disjoint simple closed curves. ConAitles
natural labeling-function fron¥ to C(F) U {@}. For amarked noded Riemann surface
(R f)with f : F — R the labeling\((R, f)) is the simplex of free homotopy classes
onF mappedto the nodes dd The level sets of\ are the strata of7 [Abi77, Ber74].

The strata of7 are lower-dimensional Teichmiier spaces; each stratum with its natu-
ral WP metric isometrically embeds into the completi@n[Mas76]. The unique WP
geodesi@q connectingp, q € .7 is contained in the closure of the stratum with label
A(p) NA(g) (see [Wol03, Thm. 13]). The open segmept— {p,q} is a solution
of the WP geodesic differential equation on the stratum with lakgd) N A(q). It
follows from Theorem 3.1 that a geodesic-length function finitepayis necessarily
strictly convex and on the open segment differentiable.
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A complete, convex subsé&f of a CAT(0) space is the base for arthogonal
projection [BH99, Chap. 1.2, Prop. 2.4]. For a general pomthere is a unique
point, the projection of pon% such that the connecting geodesic realizes the distance
to ¢. The projectionis a retraction that does not increase distance. The distgrioe
% is a convex function satisfying, (p) — d»(q)| < d(p,q), [BH99, Chap. 11.2, Prop.

2.5]. Examples of complete, convex s&tsare: points, complete geodesics, and fixed-
point sets of isometry groups. In the case.@fsince geodesics coincide at most at
endpoints, the fibers of a projection are filled out by the geodesics realizing distance
between their points and the base. In the caseZothe closure of each individual
stratum is complete and convex, thus the base of a projection [Wol03, Thm. 13]. For
simple disjoint closed curves the relation of the quantif = (lay +-- ~+€an)l/2 to

a stratum of7 was considered in [Wol03, Cor. 21]. The expansion of the WP metric
about a stratum [Wol03, Cor. 4] enabled us to give an expansion for the distance to
a stratum. The expansion combines with the comparison inequality (3.1) to provide
an inequality for distance in-the-large. In the following the quanthy serves as a
Busemann functiofor the stratum of vanishing.

Theorem 4.1. For closed curves, . .., an represented by simple disjoint distinct free
homotopy classes, le¥’ be the closed stratum of defined by the vanishing éf=

lay +---+{Lq,. The WP distance of a point p & satisfies in terms df(p): in general
dwe(p, ) < (2m¢)*/? and locally for/ small, dyp(p,.) = (2r)%/2 + O(¢?).

Corollary 4.2. For 8 represented by a simple free homotopy class the WP gradient of
lg satisfies<gradéﬁ, grad€B>WP > %éﬁ. As above, fony, ..., o, and B represented

by disjoint distinct free homotopy classes: §ds), 0 < s< s the unit-speed distance-
realizing WP geodesic connecting to p the derivatives of27t/)%/2 and/g alongy

satisfy & (2r)Y/2(y(s)) > 1 and &l5(¥(s)) > 0.

G. Riera has recently obtained an exact formula ﬁgradéa,grad@;)WP as an
infinite sum for the lengths of the minimal geodesics connectingp 8 [Rie03].
The above lower bound fo(rgradéﬁ, grad€B>WP also follows from his formula. The
lower bound and the bound (3.3) can be combined to show thatrjleetivity ra-
dius in jyp (the minimal distance to a proper sub stratumai) of .7 is comparable
to the square root of the least geodesic-length. In particular the bounds provide for
positive constants,, C.. andc... such that for = ¢q, +- -+ {q,, ¢ < ¢, thenc, £ <
(grad/,grad?),, , < c..£ andfor/(R) > c., dwp(R,R) < C... then/(R) > c, /2. The
overall bound in jwp < (SY$el )1/2 < d’injwpfor positive constants is a consequence
of the fact thain jyp and(syse )/2 are comparable for small values and are bounded
in general.

We now present in detail two further applications for the behavior of WP geodesics.
The first isBrock’s approximation by rays to maximally noded surfafi@®02]. J.
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Brock noted that th€AT(0) geometry and the observation of Bers on bounded par-
titions [Ber74] provide for an approximation of infinite WP geodesics. First note that
the (incomplete) finite length WP geodesics from a pointofto the marked noded
Riemann surfaces can be extended to include their endpoinf&.iAs a consequence

of the CAT(0) geometry the initial unit tangents for such geodesics from a point to a
stratum provide for a Lipschitz map from the stratum to the unit tangent sphere of the
point. Accordingly the image of7 — .7 in each unit tangent sphere has measure zero
and consequently the infinite length geodesic rays have tangents dense in each tangent
sphere. In particular to approximate rays it suffices to approximate the infinite length
rays.

From the result of Bers there is a positive constag# depending only on the
genus and number of punctures such that each surface has a maximal collection of
simple closed curveds, .. ., a3g—34n (a partition) with total geodesic-length bounded
by Lgn. By Corollary 4.2 each point of7 is at most distancé2mlqn)*/? to a max-
imally noded Riemann surface. To approximate an infinite yayp .7 with initial
point p, consider a point on the ray withdwp(p,q) large. The poing is at dis-
tance at most2mign)Y/? to a maximally noded Riemann surfagé. Since 7 is a
unique geodesic space the triplp, g, g¥) determines a geodesic triangle. The com-
parison to a Euclidean triangle provides that the initial angle betvﬁpandgq\# is
O(Lé{,fd\Np(p, q)~1) [BH99, Chap. 11.1, Prop. 1.7]. Further singdas infinite length
the geodesic differential equation oh ensures thatlose initial tangents provides for
close initial segmentdt further follows that initial segments q@q andp/q\# are close.
The considerations are summarized with the following.

Theorem 4.3. In .7 the infinite length geodesic rays and the rays to maximally noded
Riemann surfaces each have initial tangents dense in each tangent space.

Brock discovered that the situation for finite rays is different: convergence of initial
ray segments to finite rays does not provide for convergence of entire rays [Bro02],
[Wol03, Sec. 7]. Rays approximating a finite ray can behave in a special way. At this
time an additional question is to understand infinite rays asymptotic to a stratum.

As our second application we present a construction for asymptotic rays. Begin
with the Teichmuiller spaceZ’ for a surface witm > 0 punctures andv the axis for
a pseudo Anosov mapping class. The existence and uniqueness of a pseudo Anosov
axis was first established in the work of G. Daskalopoulos and R. Wentworth [DWO03,
Thm. 1.1]. In [Wol03, Thm. 25] the result was also obtained as an application of the
classification of limits of geodesics and the general studyanislation lengtiBH99,
Chap. 11.6]. Let{R'} be the family of marked Riemann surfaces forming the axis
andR’ a particular Riemann surface withpunctures. We vieR'} as a surface
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bundle overe and R’ as a bundle over a point. We introduce a formal bijective
pairing of the punctures of R’} with the punctures oR’ and consider the sum of
surface bundles along fibef& } + R’ as a family of marked noded Riemann surfaces.
The nodes are the paired punctures. gthe formal genus of the family le?” be the
Teichmuiller space of genug surfaces with the length functiofi= {q, + - - - + £q,
defining the stratum” containing{R'} + R’ (the nodes have free homotopy classes
a1,...,0n). Further lety (reducible and partially pseudo Anosov) be an element of
the mapping class group fa¥” given as a sum of the pseudo Anosov (fd® }) and
the identity (forR”). The mapping clasgfixesa, ..., a and the action of extends

to . with the extension acting as the product of the pseudo Anosowdrand the
identity on.7 (R').

We proceed and describe the construction of a geodesic r&y asymptotic to.
First observe that the relative systole is periodic alerigand consequently thatyse
is bounded below alongy by a positive constartd. It now follows from the gradient
bound (3.3) that there exists a positive cons@stuch that any surfade of .7 closer
in .7 to {R} +R’ thand satisfies 0< la; < ¢/3 and for3 # as,. .., an (Or a power
of anaj) then/g(R) > 2¢/3. In particular the onlghortprimitive geodesics on such
anRarea,...,an. We are ready to form the candidate ray asymptoticAaby a
limiting process. For a sequence of points aldij} + R’ tending to forward infinity,
connect the reference poiRby a WP geodesic to each point of the sequence. The
point Rin & has relatively compact neighborhoods and consequently we can select
a convergent subsequence of the connecting geodesics. Denote the resulting limit as
¢. We will verify that the limit is an infinite ray. We are interested in the behavior
of three functions or¢: (4, dwe( ,{R} +R’) anddwe( ,#). On each geodesic
connectingR to a point of{R'} + R’ each of the functions is convex (see the above
on orthogonal projections). Further each function vanishes at the far endpoint of each
connecting geodesic. It follows that each function is strictly decreasing on each con-
necting geodesic and consequently that each function is non increasing on th&limit
Now the classification of geodesic (with lengths tending to infinity) limits provides
that either: a limit is an infinite ray or at a fixed distance from the basepoint: the limit-
ing rays successively approach and then strictly recede from a stratum [Wol03, Prop.
23]. As already noted along the only possiblesmall geodesic-lengths have non in-
creasing length functions: the second limiting behavior is precluded and consequently
the limit is an infinite ray.

We will now show thatéaj anddwp( ,) tend to zero along/. For this sake
consider.#5: the points in.7 at distance at mosk from {R'} + R’. The closed set
A3 is stabilized by the action of the mapping clgssis well as by the Dehn twists
aboutaj. Since the only possible short primitive geodesicsf for a surfacg/jnare
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a1, ..., 0 it can be shown that the quotient ofs by the action of the group generated
by y and ther; is compact. Now for a sequence of points alafigending to infinity
consider the associated sequence of forward direction rays. Since the quatient
is compact we can select a convergent subsequence of rays translated by appropriate
compositions with powers of and thetj [Wol03, Prop. 23]. The resulting limit is
a geodesit in A5. Sincelq,;, dwp( ,{R}+R’) anddwp( ,.#) are non increasing
along¥, each function has a limit alorig and consequently each function is actually
constant orn. In particular eachfaj is constant or%; Theorem 3.1 provides that
eachﬁaj vanishes or%. It further follows from Theorem 4.1 thaky p( ,.) vanishes
on % and thus that/ is asymptotic ta¥’, as proposed. Finally in closing we note
that if the Teichmller space7 (R’) is not a singleton then the product (R) x

7 (R") containsEuclidean flatsandy stabilizes parallel line$R'} +R’, {R} +R".
We expect families of asymptotic rays in this case.
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