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Convexity of geodesic-length functions: a reprise

Scott A. Wolpert

Abstract

New results on the convexity of geodesic-length functions on Teichm¨uller
space are presented. A formula for the Hessian of geodesic-length is presented.
New bounds for the gradient and Hessian of geodesic-length are described. A
relationship of geodesic-length functions to Weil-Petersson distance is described.
Applications to the behavior of Weil-Petersson geodesics are discussed.

1. Introduction

In this research brief we describe a new approach to the work [Wol87](esp. Secs. 3 and

4), as well as new results and applications of the convexity of geodesic-length func-
tions on the Teichm¨uller spaceT . Our overall goal is to obtain an improved under-
standing of the convexity behavior of geodesic-length functions along Weil-Petersson
(WP) geodesics. Applications are presented in detail for theCAT(0) geometry of

the augmented Teichm¨uller space. A complete treatment of results is in prepara-
tion [Wol04]. Convexity of geodesic-length functions has found application for the
convexity of Teichmüller space [Bro02, Bro03, DS03, Ker83, Ker92, McM00, SS01,

SS99, Wol87, Yeu03], for the convexity of the WP metric completion [DW03, MW02,
Wol03, Yam01], for the study of harmonic maps into Teichm¨uller space [DKW00,
Yam99, Yam01], and for the action of the mapping class group [DW03, MW02]. We
consider marked Riemann surfacesR with complete hyperbolic metrics possibly with

cusps and consider the lengths of closed geodesics. The length of the unique geodesic
in a prescribed free homotopy class provides a function on the Teichm¨uller space.
Specifically forσ a closed curve onR, let `σ (R) denote the length of the geodesic

homotopic toσ; more generally forµ a geodesic current [Bon88], let`µ (R) denote
the total-length of the geodesic current forR.

A closed geodesicσ on R determines a cyclic cover ofR by a geometric cylinder
C . For ` the length ofσ the geometric cylinder is represented asH/ < t → è t > for
H the upper half-plane with coordinatet ; for w = exp(2πi logt

` ) the cylinder is further

represented as the concentric annulus{e−
2π2
` < |w|< 1} in the plane. We discovered

in [Wol87](Sec. 4) that the potential operator for the Beltrami equation onC is diago-
nalized by theS1 rotation action of the cylinder and that the potential equation can be
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solved term-by-term for the corresponding Fourier expansions. The special properties
for the potential theory generalize the properties for the function theory of the cylin-

der. For instance holomorphic differentials onR, lifted to C , admit Laurent (Fourier)
expansions. The WP dual of the Hessian of`σ , a quadratic form for holomorphic
quadratic differentials onR, has Hermitian and complex-bilinear componentsdiago-
nalizedby the terms of the corresponding Laurent expansions [Wol87](see Lemmas

4.2 and 4.4.) We further found that the contribution for a single Laurent term is a pos-
itive definite form. At this time, we have simplified the considerations of the Hessian
and are now able to effect a straightforward comparison to the Petersson pairing for

holomorphic quadratic differentials [Wol04]. The simplified considerations provide
the basis for an improved understanding of the Hessian and of convexity. In the fol-
lowing paragraphs we outline the approach and results. We close the discussion by
providing several applications complete with proofs.

2. The Hessian of geodesic-length

We introduce forµ a geodesic current a natural functionPµ on R. We begin with
the geometry of the space of complete geodesics on the hyperbolic plane. ForH the

upper half plane with boundary̌R = R∪{∞}, the space of complete geodesics on
H is given asG = Ř× Ř \ {diagonal}/{interchange}. A point p of H is at finite
distanced(p,σ) to a complete geodesicσ and soe−2d(p,σ) defines aGaussianon
G . The natural area measure onG is ω = (a− b)−2dadb in terms of theendpoint

coordinates(a,b)/∼. The measuree−2d(p,σ)ω is finite for G . Finiteness is noted as
follows. A pointzof H, its conjugate ¯z, and the boundary points(a,b) have cross ratio

cr(z,a,b) = (a−b) ℑ z
|z−a||z−b| . The simple inequalitycr2(z,a,b)≥ e−2d(z,

_
ab) is established by

considering the point triple(i,a,−a). Finiteness of the measure now follows from

the inequalitye−2d(i,
_
ab)ω ≤ (1+a2)−1(1+b2)−1dadbfor the point triple(i,a,b). A

geodesic currentµ for R naturally lifts to the upper half plane; the lift is a positive
measuredµ on the spaceG of complete geodesics. ForR represented as the quotient
H/Γ the integral

Pµ(p) =
∫

G
e−2d(p,σ)dµ(σ) (2.1)

defines aΓ-invariant function onH, the mean-squared inverse exponential-distance
of p to µ. Finiteness of the integral is established by comparingdµ to ω. The con-
struction forPµ is motivated by the construction for the classical Petersson series

representing the differentiald`σ of the geodesic-length onT [Gar75, Gar86]. The
reader can check thatµ → Pµ is a continuous mapping from the space of geodesic
currents to the space of continuous functions onR. The central role ofPµ in studying
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geodesic-length functions and the total-length of geodesic currents is discussed and
demonstrated below.

From Kodaira-Spencer deformation theory the infinitesimal deformations ofRare
represented by the Beltrami differentialsH (R) harmonic with respect to the hyper-
bolic metric [Ahl61]. A harmonic Beltrami differential is the symmetric tensor given
asϕ(ds2)−1 for ϕ a holomorphic quadratic differential with at most simple poles at

the cusps andds2 the hyperbolic metric tensor. AtR the differential onT of the
geodesic-length of̀σ is bounded forν ∈ H (R) as

|d`σ(ν)| ≤ 8
π

∫

R
|ν |Pσ dA

for dAthe hyperbolic area element and from applying the inequality|( ℑ z
z̄ )2| ≤ 4e−2d(z,

_
0∞)

and the formula of F. Gardiner [Gar75]. By taking limits the integral bound is gen-

eralized to the total-length of laminations. Ahlfors noted [Ahl61] for second-order
deformations defined by harmonic Beltrami differentials that the WP Levi-Civita con-
nection is Euclidean to zeroth order in the following sense. AΓ-invariant Beltrami
differentialν onH determines a one-parameter family as follows. For the complex pa-

rameterε small there is a suitable self-homeomorphismf ε of H satisfyingf ε
z̄ = εν f ε

z .
The homeomorphismf ε serves to compare the quotientsH/Γ andH/ f ε ◦Γ ◦ ( f ε )−1.
For a basis of harmonic Beltrami differentialsν1, . . .,νn and small complex param-

etersε∗ andν(ε) = ∑ j ε jν j the association(ε1, . . .,εn) to H/ f ν (ε) ◦ Γ ◦ ( f ν (ε))−1 in
effect provides a local coordinate forT . Ahlfors found for a basis of harmonic Bel-
trami differentials that the local coordinates forT are normal: the first derivatives
of the WP metric tensor vanish at the origin [Ahl61]. The observation is used in the

calculation of the WP Riemannian Hessian῭µ(ν ,ν).

Our analysis of the Hessian consists of three considerations. We consider the met-
ric cover of the cylinderC by an infinite horizontal stripS in C with theS1 rotation
action of the cylinder lifting to anR action by Euclidean translations of the strip. We

purposefully normalize the coveringS so that a Euclidean horizontal translation by
δ is a hyperbolic isometry with translation lengthδ. First, we consider the formula
for the variation of the translation length̀of the covering ofC . For z the complex

coordinate for the strip andf ε the suitable self-homeomorphism ofS the translation
equivariance provides that̀ε = f ε(z+ `)− f ε(z). We find for ν a harmonic Bel-
trami differential defining a deformation andF a fundamental domain for the metric
covering of S to C the first variation

˙̀=
1
π

Re
∫

F

d
dε

f ε
z̄ idzdz̄=

1
π

Re
∫

F
ν idzdz̄
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and the second variation

῭=
1
π

Re
∫

F

d2

dε2 f ε
z̄ idzdz̄=

2
π

Re
∫

F
ν fz idzdz̄

for f a suitable solution of the potential equationfz̄ = ν . The second variation for-
mula should be compared to the considerably more involved formula of Theorem 3.2
of [Wol87]. Second, we consider the Fourier expansion ofν on S relative to the trans-

lation group of the covering toC . From Corollary 2.5 and formulas (4.1) of [Wol87]
the potential equationfz̄ = ν admits a term-by-term solution relative to the Fourier
expansion ofν . In particular for the Beltrami differential with series expansion

ν = −4sin2 ℑ z∑aneεnz, ε =
2πi
`

,

we find that

fz = 2
(
ezℜ ∑an

eεnz−1

εn−1
−e−zℜ ∑an

eεnz+1

εn+1

)
.

The quantityfz is a linear form in the Fourier expansion ofν . The expansion enables
calculation of the above variation integral term-by-term and the calculation is a special
feature for harmonic Beltrami differentials. Third, we simplify the resulting term-by-

term expressions to obtain an exact formula in terms of the operator

A[ϕ ] = ζ −1
∫ ζ

t2ϕ dt

for quadratic differentialsϕ invariant by t → è t on H with coordinatet , and the
Hermitian form

Q(β ,δ) =
∫

1<|t|<è
βδ̄ (Imt)2 i

2
dtdt̄.

In [Wol87](Thrm. 2.4) we found thatA[ϕ ] is associated to the Eichler integral ofϕ .
The overall resulting final formula

῭=
32
π

Q(A,A)− 16
π

Q(A, Ā) (2.2)

is the replacement for the intricate formulas of Lemmas 4.2 and 4.4 of [Wol87]. The

formula can be compared to the formula of Gardiner for the first variation [Gar75].
Bounds for the Hessian of̀σ in terms ofPσ and the Petersson product can be derived
by comparing the two Hermitian forms

Q(A,A) and
∫

1<|t|<è
|ϕ |2(Imt)4 i

2
dtdt̄
|t|2

where(Imt)−1|t| is comparable to the exponential-distance oft to the imaginary axis.

The bounds are straightforward since the Hermitian forms are diagonalized by the
Fourier expansion ofϕ .
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3. Convexity results

We find that for the total-length̀µ of a geodesic current its complex Hessian onT , a
Hermitian form onH (R), is bounded in terms of the integral pairing with factorPµ

and hyperbolic area element

∫

R
νρ PµdA≤ 3π

16
∂∂`µ (ν ,ρ)≤ 16

∫

R
νρ Pµ dA

for ν ,ρ ∈ H (R). Since
∫

Rνρ dA is the WP pairing
〈
ν ,ρ

〉
WP, we have the following

comparison of Hermitian forms

〈
, Pµ

〉
W P≤

3π
16

∂∂ `µ ≤ 16
〈

, Pµ
〉

WP.

The strict convexity of geodesic-length functions and of the total-length of geodesic

currents is an immediate consequence of the positivity ofPµ . We find further conse-
quences of our calculations and considerations ofPµ . The first and second derivatives
of total-lengths̀ λ , `µ actually satisfy general comparisons

|d`λ (ν)d`µ(ν)| < `λ ῭µ(ν ,ν)+ `µ ῭λ (ν ,ν) (3.1)

and
4|∂ `λ (ν)∂ `µ(ν)| < `λ ∂∂`µ(ν ,ν)+ `µ∂∂`λ (ν ,ν). (3.2)

The complex Hessian and WP Riemannian Hessian of a total-length`µ also satisfy a

general comparison
∂∂`µ ≤ ῭µ ≤ 3∂∂`µ .

A basic consequence of the formulas is the observation that the first and second
derivatives of a geodesic-length`σ are bounded in terms of the supremum norm ofPσ

on R. The magnitude ofPσ can in turn be analyzed in terms of thethick-thindecom-
position of the surface [Wol92, II, Sec. 2]. Forσ a simple closed geodesic a suitable
decomposition ofRhas three regions:i) thick ; ii) cusps andthin collars not intersect-

ing σ; and iii) thin collars whichσ crosses. For the first region sincee−2d(p,σ) satis-
fies a mean value estimate and the injectivity radius is uniformly bounded below the
supremum ofPσ is bounded by theL1-norm‖Pσ‖ = 4

3`σ . For the second region the
distance toσ is at least the distanceδ to the region boundary and the supremum can

be bounded using the general inequalityeδρ > c bounding the exponential-distance
and the injectivity radius for a collar or cusp [Wol92, II, Lem. 2.1]. For the third
region the supremum ofPσ is bounded in terms of the reciprocal injectivity radius,
which from the general inequality is bounded byè σ /2 sinceσ crosses the collar.
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We accordingly find in complete generality that there exists constantsc∗,c∗∗ inde-
pendent ofRsuch that the gradient of the geodesic-length of a simple curve is bounded

in terms of the geodesic-length itself

〈
grad`σ ,grad`σ

〉
W P≤ c∗(`σ + `2

σ e`σ /2) (3.3)

and for the relative systolesysrel(R), the least (closed) geodesic-length forR, that

c∗∗(sysrel(R))4dimC T
〈

,
〉
W P≤ ∂∂`σ ≤ c∗(1+ `σ e`σ /2)

〈
,
〉

W P. (3.4)

In brief the first and second derivatives of a simple geodesic-length relative to the WP
metric are universally bounded in terms of the geodesic-length and the relative systole.
The bound (3.3) can be compared to the familiar universal bound‖d`σ‖T ≤ 2`σ for

the differential relative to the Teichm¨uller metric [Gar75]. Thedegenerationof Pσ

can be further analyzed in terms of thethick-thindecomposition [Wol92, II, Sec. 2].

For the study of geodesic currents and applications of geodesic-lengths it is desir-
able to have bounds (dependent onR) proportional to the geodesic-length. We find

for compact subsets of the moduli space of Riemann surfaces that there are general
uniform bounds. In particular we have the following.

Theorem 3.1. Given T , there are functions c1 and c2 such that for a curveσ

c1(sysrel(R))`σ ≤ Pσ ≤ c2(sysrel (R))`σ

with c1(s) an increasing function vanishing at the origin and c2(s) a decreasing func-
tion tending to infinity at the origin. For the total-length of a geodesic currentµ

c1(sysrel(R))`µ
〈

,
〉
W P≤ ∂∂`µ ≤ c2(sysrel(R))`µ

〈
,
〉

WP.

In summary for compact subsets of the moduli space of Riemann surfaces the Hessian
of geodesic-length is proportional to the product of the geodesic-length and the WP
pairing.

The first-derivative second-derivative comparison inequalities (3.1), (3.2) provide
for new convexity results.

Theorem 3.2. For the closed curvesα1, . . .,αn their geodesic-length sum̀α1 + · · ·+
`αn satisfies: (`α1 + · · ·+ `αn)

1/2 is strictly convex along WP geodesics,log(`α1 +
· · ·+ `αn) is strictly plurisubharmonic, and(`α1 + · · ·+ `αn)

−1 is strictly plurisuper-
harmonic.

S. K. Yeung showed with a detailed analysis of the first-derivative and second-
derivative that(`α1 + · · ·+ `αn)

−a, 0< a < 1, is strictly plurisuperharmonic [Yeu03].
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He applied the result to study the behavior of of line bundles andL2-sections overT .
C. McMullen found and used that aǹ−1

α has complex Hessian uniformly bounded

relative to the Teichm¨uller metric [McM00, Thm. 3.1]. The present result offers an
elaboration: a sum(`α1 + · · ·+ `αn)

−1 is plurisuperharmonic with complex Hessian
bounded as

−∂∂ ((`α1 + · · ·+ `αn)
−1) < (2∂∂(`α1 + · · ·+ `αn))(`α1 + · · ·+ `αn)

−2. (3.5)

4. TheCAT(0) geometry of the augmented Teichm¨uller space

Applications of geodesic-length convexity are provided by considering the augmented
Teichmüller spaceT with the completion of the WP metric [Abi77, Ber74, Mas76].
T is the space of marked possibly noded Riemann surfaces;T is a non locally com-
pact space [Abi77, Ber74].T is a CAT(0) metric space [DW03, MW02, Wol03,

Yam01]. The geometry ofCAT(0) spaces is developed in detail in Bridson-Haefliger
[BH99]. For a metric space ageodesic triangleis prescribed by a triple of points and a
triple of joining length-minimizing curves. A characterization of curvature for metric

spaces is provided in terms of distance-comparisons to geodesic triangles in constant
curvature spaces. For aCAT(0) space the distance and angle measurements for a tri-
angle are bounded by the corresponding measurements for a Euclidean triangle with
the corresponding edge-lengths [BH99, Chap. II.1, Prop. 1.7].

T with the completion of the WP metric is astratifiedunique geodesic space with
the strata intrinsically characterized by the metric geometry [Wol03, Thm. 13]. The
stratum containing a given point is the union of all open length-minimizing segments
containing the point. To characterize the strata structure in-the-large consider a ref-

erence topological surfaceF for the marking andC(F), the partially ordered setthe
complex of curves. A k-simplex ofC(F) consists ofk+1 distinct nontrivial free homo-
topy classes of nonperipheral mutually disjoint simple closed curves. ConsiderΛ the

natural labeling-function fromT toC(F)∪{ /0}. For a marked nodedRiemann surface
(R, f ) with f : F → R, the labelingΛ((R, f )) is the simplex of free homotopy classes
onF mapped to the nodes onR. The level sets ofΛ are the strata ofT [Abi77, Ber74].
The strata ofT are lower-dimensional Teichm¨uller spaces; each stratum with its natu-

ral WP metric isometrically embeds into the completionT [Mas76]. The unique WP
geodesiĉpq connectingp,q∈ T is contained in the closure of the stratum with label
Λ(p)∩Λ(q) (see [Wol03, Thm. 13]). The open segment̂pq− {p,q} is a solution

of the WP geodesic differential equation on the stratum with labelΛ(p)∩Λ(q). It
follows from Theorem 3.1 that a geodesic-length function finite onp̂q is necessarily
strictly convex and on the open segment differentiable.
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A complete, convex subsetC of a CAT(0) space is the base for anorthogonal
projection, [BH99, Chap. II.2, Prop. 2.4]. For a general pointp there is a unique

point, the projection of p, on C such that the connecting geodesic realizes the distance
to C . The projection is a retraction that does not increase distance. The distancedC to
C is a convex function satisfying|dC (p)−dC (q)| ≤ d(p,q), [BH99, Chap. II.2, Prop.
2.5]. Examples of complete, convex setsC are: points, complete geodesics, and fixed-

point sets of isometry groups. In the case ofT since geodesics coincide at most at
endpoints, the fibers of a projection are filled out by the geodesics realizing distance
between their points and the base. In the case ofT the closure of each individual

stratum is complete and convex, thus the base of a projection [Wol03, Thm. 13]. For
simple disjoint closed curves the relation of the quantity`1/2 = (`α1 + · · ·+ `αn)

1/2 to
a stratum ofT was considered in [Wol03, Cor. 21]. The expansion of the WP metric
about a stratum [Wol03, Cor. 4] enabled us to give an expansion for the distance to

a stratum. The expansion combines with the comparison inequality (3.1) to provide
an inequality for distance in-the-large. In the following the quantity`1/2 serves as a
Busemann functionfor the stratum of vanishing.

Theorem 4.1. For closed curvesα1, . . .,αn represented by simple disjoint distinct free
homotopy classes, letS be the closed stratum ofT defined by the vanishing of` =
`α1 + · · ·+`αn. The WP distance of a point p toS satisfies in terms of̀(p): in general
dW P(p, S ) ≤ (2π`)1/2 and locally for` small, dWP(p, S ) = (2π`)1/2 +O(`2).

Corollary 4.2. For β represented by a simple free homotopy class the WP gradient of
`β satisfies

〈
grad`β ,grad`β

〉
W P≥

2
π`β . As above, forα1, . . .,αn andβ represented

by disjoint distinct free homotopy classes: forγ(s), 0≤ s≤ s0 the unit-speed distance-
realizing WP geodesic connectingS to p the derivatives of(2π`)1/2 and`β alongγ
satisfy d

ds(2π`)1/2(γ(s)) ≥ 1 and d
ds`β (γ(s)) ≥ 0.

G. Riera has recently obtained an exact formula for
〈
grad`α ,grad`β

〉
W P as an

infinite sum for the lengths of the minimal geodesics connectingα to β [Rie03].

The above lower bound for
〈
grad`β ,grad`β

〉
W P also follows from his formula. The

lower bound and the bound (3.3) can be combined to show that theinjectivity ra-
dius in jWP (the minimal distance to a proper sub stratum inT ) of T is comparable
to the square root of the least geodesic-length. In particular the bounds provide for

positive constantsc∗,c∗∗ andc∗∗∗ such that for̀ = `α1 + · · ·+ `αn, ` ≤ c∗ thenc∗` ≤〈
grad`,grad`

〉
W P≤ c∗∗` and for`(R)≥ c∗, dW P(R,R′) < c∗∗∗ then`(R′)≥ c∗/2. The

overall boundc′ in jWP≤ (sysrel )1/2 ≤ c′′ in jWP for positive constants is a consequence

of the fact thatin jWP and(sysrel )1/2 are comparable for small values and are bounded
in general.

We now present in detail two further applications for the behavior of WP geodesics.
The first isBrock’s approximation by rays to maximally noded surfaces[Bro02]. J.
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Brock noted that theCAT(0) geometry and the observation of Bers on bounded par-
titions [Ber74] provide for an approximation of infinite WP geodesics. First note that

the (incomplete) finite length WP geodesics from a point ofT to the marked noded
Riemann surfaces can be extended to include their endpoints inT . As a consequence
of theCAT(0) geometry the initial unit tangents for such geodesics from a point to a
stratum provide for a Lipschitz map from the stratum to the unit tangent sphere of the

point. Accordingly the image ofT − T in each unit tangent sphere has measure zero
and consequently the infinite length geodesic rays have tangents dense in each tangent
sphere. In particular to approximate rays it suffices to approximate the infinite length

rays.

From the result of Bers there is a positive constantLg,n depending only on the

genus and number of punctures such that each surface has a maximal collection of
simple closed curvesα1, . . .,α3g−3+n (a partition) with total geodesic-length bounded
by Lg,n. By Corollary 4.2 each point ofT is at most distance(2πLg,n)1/2 to a max-

imally noded Riemann surface. To approximate an infinite rayγ in T with initial
point p, consider a pointq on the ray withdWP(p,q) large. The pointq is at dis-
tance at most(2πLg,n)1/2 to a maximally noded Riemann surfaceq#. Since T is a
unique geodesic space the triple(p,q,q#) determines a geodesic triangle. The com-

parison to a Euclidean triangle provides that the initial angle betweenp̂q and p̂q# is
O(L1/2

g,n dWP(p,q)−1) [BH99, Chap. II.1, Prop. 1.7]. Further sinceγ has infinite length
the geodesic differential equation onT ensures thatclose initial tangents provides for

close initial segments.It further follows that initial segments of̂pq and p̂q# are close.
The considerations are summarized with the following.

Theorem 4.3. In T the infinite length geodesic rays and the rays to maximally noded
Riemann surfaces each have initial tangents dense in each tangent space.

Brock discovered that the situation for finite rays is different: convergence of initial

ray segments to finite rays does not provide for convergence of entire rays [Bro02],
[Wol03, Sec. 7]. Rays approximating a finite ray can behave in a special way. At this
time an additional question is to understand infinite rays asymptotic to a stratum.

As our second application we present a construction for asymptotic rays. Begin
with the Teichmüller spaceT ′ for a surface withn > 0 punctures andA the axis for

a pseudo Anosov mapping class. The existence and uniqueness of a pseudo Anosov
axis was first established in the work of G. Daskalopoulos and R. Wentworth [DW03,
Thm. 1.1]. In [Wol03, Thm. 25] the result was also obtained as an application of the
classification of limits of geodesics and the general study oftranslation length[BH99,

Chap. II.6]. Let{R′} be the family of marked Riemann surfaces forming the axisA

andR′′ a particular Riemann surface withn punctures. We view{R′} as a surface
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bundle overA and R′′ as a bundle over a point. We introduce a formal bijective
pairing of the punctures of{R′} with the punctures ofR′′ and consider the sum of

surface bundles along fibers{R′}+R′′ as a family of marked noded Riemann surfaces.
The nodes are the paired punctures. Forg the formal genus of the family letT be the
Teichmüller space of genusg surfaces with the length functioǹ= `α1 + · · ·+ `αn

defining the stratumS containing{R′}+R′′ (the nodes have free homotopy classes

α1, . . .,αn). Further letγ (reducible and partially pseudo Anosov) be an element of
the mapping class group forT given as a sum of the pseudo Anosov (for{R′}) and
the identity (forR′′). The mapping classγ fixesα1, . . .,αn and the action ofγ extends

to S with the extension acting as the product of the pseudo Anosov onT ′ and the
identity on T (R′′).

We proceed and describe the construction of a geodesic ray inT asymptotic toS .
First observe that the relative systole is periodic alongA and consequently thatsysrel

is bounded below alongA by a positive constantc. It now follows from the gradient
bound (3.3) that there exists a positive constantδ such that any surfaceR of T closer
in T to {R′}+R′′ thanδ satisfies 0≤ `α j < c/3 and forβ 6= α1, . . .,αn (or a power
of anα j ) then`β (R) ≥ 2c/3. In particular the onlyshortprimitive geodesics on such

an R areα1, . . .,αn. We are ready to form the candidate ray asymptotic toS by a
limiting process. For a sequence of points along{R′}+R′′ tending to forward infinity,
connect the reference pointR by a WP geodesic to each point of the sequence. The

point R in T has relatively compact neighborhoods and consequently we can select
a convergent subsequence of the connecting geodesics. Denote the resulting limit as
G . We will verify that the limit is an infinite ray. We are interested in the behavior
of three functions onG : `α j , dW P( ,{R′}+ R′′) anddW P( , S ). On each geodesic

connectingR to a point of{R′}+ R′′ each of the functions is convex (see the above
on orthogonal projections). Further each function vanishes at the far endpoint of each
connecting geodesic. It follows that each function is strictly decreasing on each con-

necting geodesic and consequently that each function is non increasing on the limitG .
Now the classification of geodesic (with lengths tending to infinity) limits provides
that either: a limit is an infinite ray or at a fixed distance from the basepoint: the limit-
ing rays successively approach and then strictly recede from a stratum [Wol03, Prop.

23]. As already noted alongG the only possiblesmallgeodesic-lengths have non in-
creasing length functions: the second limiting behavior is precluded and consequently
the limit is an infinite ray.

We will now show that̀ α j anddW P( , S ) tend to zero alongG . For this sake
considerN δ : the points inT at distance at mostδ from {R′}+ R′′. The closed set
N δ is stabilized by the action of the mapping classγ, as well as by the Dehn twistsτ j

aboutα j . Since the only possible short primitive geodesicsf for a surface inN δ are
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α1, . . .,αn it can be shown that the quotient ofN δ by the action of the group generated
by γ and theτ j is compact. Now for a sequence of points alongG tending to infinity

consider the associated sequence of forward direction rays. Since the quotientN δ
is compact we can select a convergent subsequence of rays translated by appropriate
compositions with powers ofγ and theτ j [Wol03, Prop. 23]. The resulting limit is
a geodesicG 0 in N δ . Since`α j , dW P( ,{R′}+R′′) anddWP( , S ) are non increasing

along G , each function has a limit alongG and consequently each function is actually
constant onG 0. In particular each̀α j is constant onG 0; Theorem 3.1 provides that
each̀ α j vanishes onG 0. It further follows from Theorem 4.1 thatdW P( , S ) vanishes

on G 0 and thus thatG is asymptotic toS , as proposed. Finally in closing we note
that if the Teichm¨uller spaceT (R′′) is not a singleton then the productT (R′) ×
T (R′′) containsEuclidean flatsandγ stabilizes parallel lines{R′}+R′′ , {R′}+R′′′ .
We expect families of asymptotic rays in this case.

References

[Abi77] William Abikoff. Degenerating families of Riemann surfaces.Ann. of
Math. (2), 105(1):29–44, 1977.

[Ahl61] Lars V. Ahlfors. Some remarks on Teichm¨uller’s space of Riemann sur-
faces.Ann. of Math. (2), 74:171–191, 1961.

[Ber74] Lipman Bers. Spaces of degenerating Riemann surfaces. InDiscontinuous
groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park,
Md., 1973), pages 43–55. Ann. of Math. Studies, No. 79. Princeton Univ.
Press, Princeton, N.J., 1974.
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