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Abstract

Several large surveys administered by the Census allow responses in sev-
eral different modes (mail, telephone, personal interview), in some cases —
as in the American Community Survey (ACS) — after sub-sampling at some
stages from that part of the sample which has not responded at any earlier
stage. Analysis of the survey results usually proceeds by weighting responses
roughly by inverse unconditional probability of response to the survey. But
often, nonresponse in the different modes can be modelled meaningfully in
terms of demographic and geographic variables (such as dwelling type and
aggregated characteristics related to ethnicity and socieoeconomic status),
and the results of such models derived from previous recent surveys could
conceivably be used to improve the estimation of population totals and do-
main subtotals which is ordinarily the goal of large surveys. This paper
applies the concepts of sample-survey theory to investigate the theoretical
improvements possible assisted with both correctly and incorrectly specified
models, and illustrates the issues and improvements using data from the 1990
decennial census. In the setting of models no worse than those fitted to one
state’s decennial-census data and applied to another similar and neighbor-
ing state, the mean-squared error is definitely improved by incorporating the
model into sample-weighted estimators, through an adjustment factor which
is constant across PSU’s.
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1 Introduction and Problem Statement

Suppose that individuals in a sampling frame U are selected for inclusion
in a large survey S with single and joint inclusion probabilities respectively
πi, πij, and that each individual can respond to the survey in a succession
of K possible modes, with mode 1 being the most direct, such as mail-
response in the decennial census or American Community Survey. (In the
ACS, the modes are: Mail-, Telephone-, and Personal-Interview response. In
the decennial census, the modes are Mail- and Interviewer- response, but the
census data can be analyzed further, as in Slud (1998, 1999, 2001) by treating
as different modes the responses to interviewers within successive quantile-
intervals of interviewer followup time within ARA.) Of those individuals
selected for initial inclusion and not responding in any of modes 1, . . . , k,
where k = 1, . . . , K − 1, a fraction ak are randomly sub-sampled for
attempted enumeration under mode k + 1. For each individual i ∈ U ,
denote by Jik the indicator that individual i would, if selected and followed
up, respond to the survey in mode k and no earlier mode. Then

∑K
k=1 Jik =

Ji is the indicator that individual i responds in any mode to the survey.

Suppose also that each individual in the sampling frame comes equipped
with a vector Xi of predictor variables for response, which are observable
or known in advance of actual enumeration. Such predictors would include
geographic area, along with variables such as housing type which would be
known from a master address list and aggregates from recent previous surveys
of demographic characteristics for the neighborhood (such as census block-
group or tract) containing the individual. A list of such predictors based on
block-group aggregated census long-form data is provided in Slud (1998). As-
sume that the conditional probabilities hik of survey response by individual
i in mode k , given nonresponse in each of modes 1, . . . , k−1, are modelled
and have been estimated as parametric functions hk(Xi) = hk(Xi, β

(k)) of
the predictor variables, where the estimated parameters (e.g., regression coef-
ficients in generalized linear models) are denoted β(k). The particular model
implemented below in analysis of 1990 decennial census data, following Slud
(1998, 1999, 2001), is the logistic model

hk(x, β) =
ex·β

1 + ex·β

For the present, assume that the parametric model is a fixed-effect model
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only. The case where individuals share a random effect within the same
neighborhood over which the aggregated predictor-components in Xi are
common, will be treated later. Then prospectively, before sampling,

p0
ik =

∏

j<k

(1− hij) · hik

gives the probability with which individual i would respond to the survey
in mode k and not earlier, if selected for inclusion and followed up that
far. (Here we adopt the convention that hi0 = 0.) Taking into account the
probabilities with which nonrespondents at each stage are included in later
stages of followup, we obtain the probabilities

pik =
k−1∏

j=1

{(1− hij) aj} · hik =


 ∏

1≤j<k

aj


 p0

ik

with which individuals assumed to be included in the initial sample are sam-
pled up to and respond within the k’th response mode. Note that as a
practical matter, models and estimates for the final-stage response proba-
bilities hiK are largely speculative, because they reflect rates of interview-
refusal and omission (e.g., because of failure of interviewers to make personal
contact or find proxies) concerning which there is no direct data. Only a fol-
lowup or post-enumeration study could give more than a hypothetical cast
to estimates of these probabilities.

The data recorded from the survey will be, for each individual i ∈ S,
the response indicator vector (Jik, k = 1, . . . , K) together with a label Ai

for the latest mode under which individual i is selected for followup. In
case Ji = 1, the label Ai is equal to that mode k for which Jik = 1,
and an attribute value yi (such as number in household, or total household
income) is also recorded.

The survey data are to be used to estimate the frame population total
t =

∑
U yi for the attribute in question, and the estimators to be considered

all take the form of a weighted linear combination t̂w =
∑

S

∑K
k=1 wik Jik yi.

The objective of the present research is to investigate what the optimal
weights wik are, from the vantage point of minimum mean-squared error;
how much difference it makes to use them by comparison with the weights
one would use if the probabilities pik were completely unknown, and how
sensitive the weights are to correct specificaton of the model hk(Xi, β

(k)).
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Remark 1 A further objective of this effort at modelling and analysis could
be to study the problem of optimally designing sub-sampling rates ak and
allowing them to depend on location and neighborhood demographics. In the
absence of dependence upon geographic or demographic characteristics, this
problem has been studied in Elliott, Little & Lewitzky (2000). Further work
in this direction, involving dependencies ak(Xi), is probably most applicable
in business market surveys, but could also be useful in some government
surveys, unless there are constraints precluding some types of inequalities
among inclusion probabilities based on demographics.

2 Formulas for Variance of Estimation and

Optimal Weights

We begin by deriving formulas for the expectation and variance of the statis-
tic t̂w. First, recalling that E Jik = pik by definition, we find

E(t̂w) = E

(
∑

i∈U

∑

k

I[i∈S] yiwik Jik

)
=

∑

i∈U

∑

k

πiwik pik yi

Thus the bias in estimating
∑

U yi by t̂w is

∑

i∈U

yi

[
πi
∑

k

wik pik − 1

]

If the quantities pik were in fact known or accurately estimated, then for the
estimator t̂w to be approximately unbiased for all possible attribute-values
yi, the weights wik must evidently satisfy

πi
∑

k

wik pik = 1 (1)

To simplify concepts and notations in what follows, define

qi ≡ 1 −
K∑

k=1

pik

to be the probability of nonresponse to the survey for an included unit i.
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Remark 2 The unbiasedness condition (1) cannot generally be satisfied,
even approximately, in model-free fashion. That is, it forces weights wik to
be different for different i as long as the quantities πi(1 − qi) are. Since
the qi are not known, getting them approximately right involves models and
estimates.

If we let the indicator variables for initial sample inclusion be εi (with
πi = Eεi and πij = E(εiεj)), then the design variance is calculated as

∑

i,j∈U

∑

k

∑

l

wik wjl yi yj Cov(Jikεi, Jjlεj) =

∑

i,j∈U

∑

k

∑

l

wik wjlyi yj pik
(
πi δi,j (δk,l − πi pil) + (1− δi,j) pjl (πij − πi πj)

)

which, after some further algebra, can be expressed as

∑

U

∑

k

πiwik pik y
2
i

(
wik −

∑

l

wilpil

)

+
∑

i,j∈U

yiyj

(
∑

k

wikpik

) (
∑

l

wjlpjl

)
(πij − πiπj) (2)

Let us examine formula (2) to understand better its dependence upon the
probabilities pik and weights wik. Denote by t̂π the ordinary Horvitz-
Thompson estimator (Särndal et al. 1997) for the population total of the
attributes y based upon a single response-mode (the usual case) with the
same inclusion-probabilities πi, πij as above, and recall that the formula
for the theoretical variance of t̂π is given by

V (t̂π) =
∑

i, j∈U

yi yj
πij − πiπj

πiπj

Then, as long as the weights wik are chosen as in (1) to make the estimator
t̂w unbiased, formula (2) can be re-written

V (t̂w) − V (t̂π) =
∑

U

∑

k

w2
ik y

2
i πi pik −

∑

U

y2
i

πi
(3)

More generally, if the weights wik are fixed, and if individual bias-terms are
defined as

bi = πi
K∑

k=1

wik pik − 1
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then V (t̂w)− V (t̂π) is given by the right-hand side of (3) plus

∑

U

y2
i

πi
−
∑

U

y2
i

πi
(1 + bi)

2 +
∑

i,j∈U

yiyj
πij − πiπj

πiπj
{(1 + bi)(1 + bj)− 1}

=
∑

i,j∈U

yi yj {bi bj + bi + bj}

(
πij − πiπj
πi πj

−
δij
πi

)
(3′)

But the sum of of (3) and (3′) is easily minimized subject to fixed bi, for
each i, by equalizing the weights wik over all k, leading to

weq
ik =

(
πi

K∑

k=1

pik

)−1

=
1

πi (1− qi)
(4)

A preliminary conclusion of this analysis is that even if the mod-

els on which we base weights are misspecified, there is still no bene-

fit in letting the weights vary with response-mode: all responses in

a particular demographic stratum should receive the same weight,

regardless of response mode. But perhaps there continues to be

some benefit in keeping response modes separate from the point of

view of generating models for probabilities of nonresponse.

In the special case where the weights (4) are used, we can view inclusion in
the sample as consisting both of random selection and response, so that t̂w
becomes the standard Horvitz-Thompson or π-estimator which is unbiased
with variance

∑

i, j∈U

yi yj

[
πij − πiπj
πi πj

+ δi,j
qi

πi(1− qi)

]
=

∑

i,j∈U

yi yj

(
π̃ij
π̃iπ̃j

− 1

)
(5)

and the modified inclusion probabilities are π̃i = π̃ii = πi(1 − qi) and
π̃ij = πij(1− qi)(1− qj), for i 6= j.

We develop the variance formula (2) now, together with formulas for bias
and MSE, in the setting where the weights wik = wi are constant over
response-mode k, and can therefore be expressed in the form

wi = [ πi (1− q̃i) ]
−1 (6)
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By direct substitution, we obtain in this case 1+ bi = (1− qi)/(1− q̃i), and

Bias(t̂w) =
∑

U

yi (q̃i − qi)

1− q̃i
(7)

and then, using (2), we obtain Var(t̂w) =

∑

U

y2
i (1− qi)

πi (1− q̃i)2
−
∑

U

y2
i (1− qi)

2

πi (1− q̃i)2
+

∑

i,j∈U

yi yj
πij − πiπj
πi πj

[
(1− qi)(1− qj)

(1− q̃i)(1− q̃j)

]

which leads directly to the expression

Var(t̂w) = Var
(
t̂π, y(1−q)/(1−q̃)

)
+
∑

U

(
yi

1− qi
1− q̃i

)2
qi

πi (1− qi)
(8)

both terms of which can conveniently be expressed in terms of a modified
‘attribute’

ỹi = yi
1− qi
1− q̃i

Remark 3 The approach followed here accommodates both general attributes
yi and survey-weights πi, but the specific numerical MSE comparisons
below will be made only for response-indicator attributes and simple-random-
sampling (SRS) weights (πi ≡ π).

Two special cases of the variance formulas (2) and (8) are of particu-
lar interest, in the setting where equal weights (balanced random sampling
without replacement) have been applied. Let πi ≡ π denote the proba-
bility with which each individual i is included in the initial sample; let
s2
yU = 1

|U |−1

∑
U (yi − yU)

2 denote the frame-population attribute variance;

and let s2
ỹU denote the analogous frame-population variance for ỹi in place

of yi. First, consider the case where variations of the probabilities pik by
individual (or demographic group such as neighborhood) are not available.
In that case, denote by p∗k the population-wide probability of responding to
the survey in mode k . Then

q∗ ≡ 1−
K∑

k=1

p∗k = 1 − |U |−1
∑

U

∑

k≤K

pik
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More generally, if response-rate constants q̃ are used in weights w̃ =
1/(π(1− q̃)), then the estimator variance (8) with ỹi = (1− qi)yi/(1 − q̃)
becomes

V (t̂w̃) =
|U |(1− π)

π
s2
ỹU +

1

(1− q̃)2 π

∑

U

y2
i qi (1− qi) (9)

For comparison, the variance based upon the stratumwise weights weq
i

defined in (4), based upon (correctly specified) probabilities pik which vary
with demographics, is

V (t̂weq) =
|U |(1− π)

π
s2
yU +

∑

U

qi
(1− qi)π

y2
i (10)

Note that the ratio of these final formulas depends not only upon the
initial sampling fraction and the population coefficient of variation of the
attribute y, but also on population characteristics relating the attributes
to the qi .

Assuming that the weights (6) will not vary with response mode, the
formulas (7) for bias and (8) for variance of t̂w together lead to the following
formula for Mean-Squared Error:

MSE(t̂w) =

(
∑

U

yi (qi − q̃i)

1− q̃i

)2

+ Var(t̂π,ỹ) +
∑

U

ỹ2
i qi

πi (1− qi)
(11)

Remark 4 In the case of constant weights, where q̃i ≡ q̃ does not vary
with i, it is not obvious that the overall average response rate q∗ or a
direct model-based estimate of it are the best constants to use. In fact, since
we will find below that bias squared is usually the dominant term in MSE,
the best constant to use should be approximately the one which zeroes out the
bias. In the case where yi is a response indicator, this value is easily seen
to be

q̃opt =
∑

i∈U

y2
i

/ ∑

i∈U

yi (12)

In terms of a modelled set of response probabilities qmod
i = 1 −

∑
k≤K pik,

the analogous constant is

q̃mod =
∑

i∈U

yi qi
/ ∑

i∈U

yi (13)
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If the constant weights w̃opt = 1/(π(1− q̃opt)) based on (12) were used, the
bias would be 0 by definition, and the MSE would be given by (9). Since
these constant weights will never be available, we will consider below using
w̃mod = 1/(π(1 − q̃mod)) based on (13) instead, in which case the variance
is again given by (9), to which we must add the bias-squared (

∑
U yi(qi −

q̃mod)/(1− q̃mod))
2 to get MSE.

2.1 Effect of Weighting in a Census Survey: Data Analysis

We first specialize the comparison between variances (9) and (10) to one
of the cases most relevant to the ACS, where the attribute yi of interest
may be regarded as the indicator of a valid household enumeration for the
index i on the Master Address File (MAF) if household i were followed
up without time-limitation. (Different, but also relevant, choices would be
to view yi as the number of valid census persons within each household, or
the household income or indicator of poverty or of participation in a program
like Food Stamps, but we do not pursue these possibilities for now.) Then
the population total

∑
U yi should be interpreted as the true count of

households, and qi = 1 −
∑

k pik is the probability within a sample survey
like ACS that a household on the MAF would not be enumerated up to and
including the final (K’th) response mode. Although undercount and refusal-
rates are usually small — of the order of one percent up to a few percent
— it may still happen that differences among qi for addresses i with
different demographic and geographical characteristics can differ by sizeable
factors. When this is true, there is some hope that model-assisted weighting
can improve the accuracy of estimates from the survey.

The data used in the present comparison are the 1990 decennial-census
files previously used by Slud (1998, 1999, 2001) in modelling response to the
census, by mail or by later ‘modes’ of personal response to followup enumera-
tors within successive quantile intervals of followup time within ARA. These
files include tallies by block-group of the numbers (of HU’s) responding by
mail, before the 50th percentile followup time within the ARA, between
the 50th and 75th , between the 75th and 90th , and after the 90th .
In addition, the files contain geographic and demographic information on
the block-group, plus the one variable housing-type (htyp) which referred to
individual HU’s (and was known from the address-file, before enumeration).
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These predictive variables were used in Slud (1998, 1999, 2001) to fit logistic
models for response-rates by state, with numbers of predictors ranging from
about 20 to about 70, depending on the size of the state and the mode of
response. (The greater numbers of variables arose, from BIC-like penalized-
deviance model-fitting, in models in large states either for mail-response of
for response before the 90th percentile of enumerator checkin times, among
HU’s which had not responded by the 75th percentile. The fitted models are
used here as the models hk(Xi, β) specifying conditional response probabil-
ities hik for individual HU’s in the i’th htyp-by-block-group stratum within
a state to respond in mode k, given that it had not responded earlier. The
response-modes chosen for illustration are k = 1 for Mail-response, and
then for HU’s which did not respond by mail, k = 2 for response before the
50th percentile of ARA checkin time, k = 3 for response between the 50th

and 75th percentiles of checkin time, and k = 4 for response between the
75th and 90th percentiles. For present purposes, we treat the HU’s which
did not respond by the 90th percentile of checkin times as though they did
not respond at all.

To mimic the sub-sampling scenario of this paper, we define a vector of
sub-selection probabilities π, a1, a2, a3, for example an inclusion probability
of π = 1/2 followed by sub-sampling rates ak = 1/3 for later stages among
HU’s which have not responded in mode ≤ k− 1. (These are the inclusion
and subsampling rates tenatively projected for areas sampled in the ACS
in a given year.) We compare the elements and total of the MSE formula
(11) for several choices of sub-selection probabilities, states, and choices of
weights based either on a ‘correct’ model (ie one fitted to the same state for
the same census data), no model, or on an incorrect model, such as one based
on a neighboring state. Recall that the attribute yi of primary interest here
is the indicator of response (by mode K = 4 or earlier). We display for
each state, subselection probability vector, set of ‘true’ probabilities pik, and
choice of weights wi, the following quantities: Bias as given by formula
(7), variance-term 1 or Var1 equal to Var(t̂π,ỹ) in (11), variance-term 2
or Var2 equal to the last summation-term in (11), and the total MSE as
given by (11). Note that always MSE = Bias2 + Var1 + Var2 .

Consider first the state of Delaware, with (π, a1, a2, a3) = ( 1
2
, 1

3
, 1

3
, 1

3
).

There were a total of 219509 HU’s on the (final) address-list within the 727
htyp by block-group strata containing at least 21 HU’s, of which 10662 did
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not respond by the 90th percentile of their ARA’s checkin times. Since the
total count

∑
i∈U yi of responders is likely to have estimation error of order

500 to 2000, we can expect total MSE to be in the range 105 to 5 · 106.

First assume that the conditional probabilities hik of response at each
stage are as given by the empirical fractions of households who did respond
at that stage in that htyp by block-group stratum. The results are as follows.

(a) If weights are chosen stratumwise, equally for all response modes (wi =
weq
i ) as in (4), then we obtain

Bias Var1 Var2 MSE

0 10144 144300 154444

(b) If weights are chosen as wi = w∗ = 1/(π(1 − q∗)) with the actual
population value of q∗, the MSE components are

Bias Var1 Var2 MSE

1261 15831 116041 1721488

(b′) If weights are chosen as wi = w̃opt = 1/(π(1 − q̃opt)) with q̃opt as
given by (12), the MSE components are

Bias Var1 Var2 MSE

0 15641 114652 130294

(c) If weights are chosen using the predictive models, i.e., wi = 1/(π(1 −
qi)) with the model-fitted value of qi, the MSE components are

Bias Var1 Var2 MSE

358 11520 137253 276711

(d) If weights are constant but q∗ is taken to be not the true value but
the one derived from the fitted-model values pik, then the MSE com-
ponents are

Bias Var1 Var2 MSE

1131 15811 115897 1410501

(d′) If constant model-based weights are chosen as wi = w̃mod = 1/(π(1−
q̃mod)) with q̃mod as given by (13), the MSE components are

11



Bias Var1 Var2 MSE

394 15700 115085 285771

Certainly it seems from these comparisons that it could be worthwhile to
use predictively modelled response-probabilities to define weights, since the
information to approach the truly optimal weights of settings (a) or (b′) will
never be available. Stratum-dependent weights qi derived from a good
predictive model, as in (c), seem to provide nearly as good MSE’s, but re-
markably, constant weights q̃mod in (d′) are virtually just as good. Note
that the relatively small changes among constant weights — q∗ = 0.23539
in (b), to q∗ = 0.23586 in (d), to q̃opt = 0.23125 in (b′), and finally to
q̃mod = 0.23270 in (d′) — have sizeable consequences in MSE.

We illustrate with a further calculation on DE data, this time with sub-
sampling probability vector (π, a1, a2, a3) = ( 1

2
, 1

2
, 1

2
, 1

2
). Now the results

of the six plans (a)–(d′) itemized above can be found in the table

Weighting Plan Bias Var1 Var2 MSE

(a) strat, true 0 10144 112933 123078

(b) const, true 1152 14002 95072 1436854

(b’) opt const 0 13848 94031 107880

(c) strat, pred 270 11082 108187 192374

(d) const, pred 949 13975 94888 1010369

(d’) model const 332 13892 94331 218501

Here is a similar calculation, with the original subsampling probability vector
(π, a1, a2, a3) = ( 1

2
, 1

3
, 1

3
, 1

3
), applied to 1990 Maryland state data and

fitted models.

Weighting Plan Bias Var1 Var2 MSE

(a) opt, true 0 80886 1098353 1179239

(b) const, true 8337 120722 899262 70521374

(b’) opt const 0 119558 890596 1010155

(c) opt, pred 2522 92122 1042125 7494569

(d) const, pred 34993 124479 927251 1.226e9

(d’) model const 2801 119949 893504 8861252

The conclusions in these further tables are very much the same as in the
first itemization of (a)–(d′): in the absence of knowledge of the true optimal
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sampling weights, stratumwise model-based weights from a good predictive
model are very appealing. However, virtually all of the MSE benefits of
the predictive model can already be obtained with constant weights w̃opt =
1/(π(1− q̃opt)) as prescribed by (13).

To make these calculations a little more realistic, we should consider
some cases where a reasonable but wrong model is used, for example the
model based on PA applied to MD data. The model fitted to PA data was
applied to the 5523 MD htyp by block-group strata which had at least 21
HU’s initially and which had at least one nonresponding HU as of the 75th

percentile of checkin times within ARA. The model was a reasonable one,
but was also slightly misspecified. For data at the Mail-response stage, the
model-fitted response rates at the PSU level had correlation 0.80 with the
actual rates, where the analogous correlations for MD rates with the rates
from the model fitted to MD was 0.83, and the correlation between PA rates
and predicted rates from the model fitted to PA data was 0.85. For non-
mail-responders, the MD response rates up to the 50th percentile checkin
within ARA correlated 0.18 with the PA model, where the MD model had
correlation 0.23, and the correlation of corresponding PA rates with those
predicted by the bPA-fitted model was 0.18. For nonresponders up to the
50th percentile of checkins, the correlation between PA model predictions
and actual response rates by the 75th percentile was 0.15, while the
MD model gave correlation 0.16 and the correlation of corresponding PA
rates with those predicted by the PA-fitted model was 0.22. Finally, for
nonresponders up to the 75th percentile of checkin times within ARA, the
correlation between PA model predictions and actual response rates by the
75th percentile was 0.11, while the MD model gave correlation 0.09 and the
correlation of corresponding PA rates with those predicted by the PA-fitted
model was 0.15.

The following Table, representing the same weighting plans (a)–(d′) as
previous tables, displays MSE and its components for MD data where the
‘predictive’ model is the misspecified one based on PA discussed in the pre-
vious paragraph. While greater degrees of model misspecification are very
likely, this Table reinforces the conclusion of the previous tables. The central
conclusion is that the predictive model if at all reliable ought to be used in
determining weights for analysis of the multistage survey data, but only in
the form w̃opt = 1/(π(1 − q̃opt)) used in weighting-plan (d′), with q̃opt
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constant across PSU’s, as given by (13).

TABLE 1. MSE AND COMPONENTS FOR MISSPECIFIED MODEL

Weighting Plan Bias Var1 Var2 MSE

(a) opt, true 0 80879 1097557 1178436

(b) const, true 8316 120634 898834 70177872

(b’) opt const 0 119472 890178 1009650

(c) opt, pred 4696 95823 1065803 23215331

(d) const, pred 4188 120056 894533 18558040

(d’) model cons -1794 119222 888317 4224339

3 Conclusions

This paper has studied the sample-weighted estimation of population totals,
based on survey data collected in several stages, in which nonresponders
from earlier stages are sub-sampled at later stages. On theoretical and data-
analytic grounds, comparisons among weighting plans with respect to Mean-
Squared Error have been drawn. The clear but tentative conclusions, from
both the theoretical formulas and data illustrations, are as follows:

• Weights for analyzing such survey data should be constant across re-
sponse modes, although conceivably variable across demographically
distinct PSU’s.

• The weights chosen from a predictive demographic model for non-
response model to be inversely proportional to sampling inclusion weights,
wi ≡ 1/(πi(1− q̃mod)), seem in all cases studied to be close to optimal.
They are not strictly optimal from the point of view of MSE, especially
if a very strongly predictive model for non-response by demographic
predictors is available.

• It therefore seems advantageous to use a demographic model in weight-
ing, but not in a form (such as (c) in the Tables) which applies differ-
ent weighting adjustments in different PSU’s. This kind of weighting
adjustment appears robust to some degree of model misspecification.
Further research is needed to investigate the degree of misspecification
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which would make model-based weighting-adjustments (13) disadvan-
tageous with respect to Mean-Squared Error.
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