Adaptive Designs for Group Sequential Clinical Survival Experiments

Eric V. Slud, University of Maryland College Park

OVERVIEW

- I. Two-Sample Clinical Trial Statistics
 - A. Large-sample background
 - B. Loss-functions & constraints on actions
- II. Asymptotic Formulation & Two Examples
- III. General Two-look Optimized Plans A. Work with Eric Leifer, NHLBI
- IV. Plans Allowing Accrual Continuation B. Work with A. Koutsoukos, Amgen, and L. Rubinstein, NCI

TWO-SAMPLE CLINICAL TRIAL STATISTICS

Data format : $(E_i, T_i^*, \Delta_i^*, Z_i, i = 1, \ldots, N_A(\tau))$ for analysis at time t_* .

 E_i entry-times, N_A arrival-counting, τ accrual-horizon

 X_i failure time, C_i indep. right-cens., Z_i trt. gp. $(X_i, C_i \text{ cond. indep. given } Z_i \& \text{ strat. variable } V_i)$ $T_i^* = X_i \land C_i \land (t_* - E_i) , \ \Delta_i = I_{[X_i \leq C_i \land (t_* - E_i]})$

PROBLEM: test H_0 : $S_{X|Z}(t|z) \equiv S_X(t)$, z = 0, 1 with multiple interim looks & experimentwise validity.

TEST STATISTIC : for look at t_* , define $Y_z^*(s) = \sum_j I_{[Z_j=z, T_j^* \ge s]}, \quad Y^*(s) = Y_1^*(s) + Y_0^*(s) \quad at\text{-risk}$ $W(t_*) = \sum_i \int K(s, \hat{S}_X(s)) \{Z_i - \frac{Y_1^*(T_i^* \land s)}{Y^*(T_i^* \land s)}\} \Delta_i^* dI_{[T_i \le s]}$ asympt. indep. incr., with estimated variance $\hat{V}(t_*) =$

$$\sum_{i} \int K^{2}(s, \hat{S}_{X}(s)) \{ \frac{Y_{1}^{*}(T_{i}^{*} \wedge s)Y_{0}^{*}(T_{i}^{*} \wedge s)}{Y^{*}(T_{i}^{*} \wedge s)} \} \Delta_{i}^{*} dI_{[T_{i} \leq s]}$$

Reject based on $-W(t_*) \ge b(t_*) \sqrt{\hat{V}(t_*)}$

CLINICAL-TRIAL ACTIONS & LOSSES

Decision-Theoretic Set-up:

Actions: look-times t_{k*} & boundaries $b_{k*} = b(t_*)$ for $W/\hat{V}^{1/2}$

but additional flexibility relating accrual to interim results is possible !

Prior: $\pi(d\vartheta)$ for group-difference log hazard ratio parameter ϑ (within semiparametric model).

Losses: costs of experimentation $c_1(t, \vartheta)$, wrong decision $c_2(\vartheta)$, late (correct) decision $c_3(t, \vartheta)$,

these loss elements introduced in Leifer (2000) thesis. Costs are economic within-trial, ethical within-trial, and economic after-trial.

What can the adaptive actions depend on ?

Available actions are, at any look-time: (1) stop & reject, (2) stop & accept, or (3) continue with specified additional look time and **accrual/followup rules**.

Adaptively curtailed followup not a realistic option. Look-times and accrual rate could depend on cumulative response data.

CURRENT APPROACHES

(1) Look-times pre-specified, accrual as rapid as possible within pre-specified interval $[0, \tau]$.

Stopping boundary (upper & lower) for $W(t_k)/\hat{V}^{1/2}(t_k)$ specified with shape from parametric family $b_k(c), a_k(c)$ to achieve experimentwise α , e.g. $b_k =$

c: Pocock 1977; $c \cdot \sqrt{V(t_k)}$: O'Brien-Fleming 1979; 2-param (power-law) form: Pampallona-Tsiatis 1994

Other authors: Jennison et al., Chang et al.

(2) Variant: times as level-crossing times for V(t)(often referred to as *information time* because V is variance of score statistic).

Lan-DeMets 1983, Sellke-Siegmund 1983

(3) Variant: specifies incremental $\alpha(t_k)$ to be spent at each look-time, summing to α . Allows current estimates of accrual & variance.

Slud & Wei 1982, Lan & DeMets 1983

(4) Methods with interim design changes based on predictive or conditional power, *stochastic curtailment* etc.

Lan et al. 1982, Proschan et al. 1992, & others

GENERAL SETTING FOR RESEARCH TASKS

All methods rely on asymptotically Gaussian timeindexed statistic-numerator $n^{-1/2}W(t)$ with indep. incr.'s, and variance function V(t) to be estimated in real or information time.

V(t) in H_0 is functional of $(S_X, S_{C|Z}, \Lambda_A \equiv E(N_A))$

$$\int K^2(S_X(s)) \frac{\pi(1-\pi)\Lambda_A(t-s)S_{C|Z}(s|1)S_{C|Z}(s|0)}{\Lambda_A(t)(\pi(S_{C|Z}(s|1)+(1-\pi)S_{C|Z}(s|0))} dF_X(s)$$

Control parameters: At each $t = t_k$, can choose t_{k+1} , a_{k+1} , b_{k+1} and factor $(r(u), t_k < u \leq t_{k+1})$ (fraction of potential accrual to accept).

PROBLEM 1: To optimize times and cutoffs when $r \equiv 1$.

PROBLEM 2: To maintain overall nominal significance level, while allowing r < 1 in some settings.

MAIN COMPUTATIONAL METHOD of optimizing boundaries is parametric search for parametric boundary classes, or **backward induction**.

Optimal Boundary in 2-Look Problem (w. Leifer)

Data: $W(t) = B(t_i) + \vartheta t_i$, i = 1, 2 t_1 is fixed in advance, continuation-time $t_2 - t_1 \ge 0$ is chosen as function of $W(t_1)$.

Loss for stopping at τ with Rejection indicator z:

$$c_1(\tau,\vartheta) + c_3(\tau,\vartheta) + z \left(c_2(\vartheta) - c_3(\tau,\vartheta)\right) \left(2I_{[\vartheta \le 0]} - 1\right)$$

Problem to find min-risk test under prior $\pi(d\vartheta)$, with sig. level $\leq \alpha$ and type II error at $\vartheta_1 \leq \beta$.

Under regularity conditions on loss elements (*piece-wise smoothness*, $c_2 \ge c_3$, $c_1 \nearrow \infty$) and prior $\pi(d\vartheta)$ assigning positive mass to neighborhoods of $0, \vartheta_1 > 0$:

can show that optimal procedures are nonrandomized (w.p.1 after small random perturbation of c_1) and essentially unique, rejecting for $W(t_2) \ge b_2(W(t_1))$.

Example. $\alpha = .025, \ \beta = .1, \ \vartheta_1 = log(1.5),$ time scaled so $\tau_{fix} = 1$. Optimized $t_1 = .42 \cdot \tau_{fix}$.

$e^{\vartheta} = \text{hazard ratio}$	0.9	1.0	1.25	1.5	1.75
$1.51 \cdot \pi(\{\vartheta\})$	0.2	1.0	0.2	0.1	0.01
$c_1(t, \vartheta)$	t	t	t	t	t
$c_2(artheta)$	200	100	$\overline{50}$	250	500

Total Trial Time

Second Look Critical Value

Fixed-Length Adaptively Stopped Accrual(with Koutsoukos & Rubinstein)

Times $t_j = j$ fixed, j = 1, ..., K. Idea is to specify immediate lower and upper stopping boundaries a_j, b_j for W(j), in simple parameterized form (eg, $a_j \equiv -a/\sqrt{j}$, $b_j \equiv b$) plus in-between stopping boundary c_j to be used for decision to continue trial with modified (eg stopped) accrual. If this boundary is crossed at j, continue to fixed later time (eg j + 1) and stop, with rejection only if $W(j + 1) > R_{j+1}$.

With $\{a_j, b_j, c_j\}$ specified, can optimize alternativeaveraged power over R_{j+1} subject to experimentwise sig. level α .

Example given in the following pictures – taken from Koutsoukos, Rubinstein & Slud (2000) — has K = 7, with maximum accrual period [0, 6].

Objective here has been to sketch augmented control parameters: loss structure does not ordinarily incorporate importance (eg for ethical concerns) of flexibility of stopped accrual.

- The upper bound is a standard O'Brien-Fleming upper bound for a 7 look design, with α=.025.
- The lower bound is an asymmetric lower bound taken from an O'Brien-Fleming 6 look design, yielding .05 probability of crossing for Δ=1.4 (for which the trial has power 80%).

Figure 1: EAS Early Stopping Bounds

Figure 2: EAS Accrual Stopping and Rejection Bounds

- The H₀ final rejection (1-sided) bound is optimized with respect to power against a defined mix of alternative hypotheses.
- The early accrual stopping bound and rejection bound, together, yield .05 conditional probability of failure to reject H₀ after stopping accrual at the boundary (assuming a defined mix of alternative hypotheses).

References

For clinical-trial large sample theory:

Tsiatis (1982), Andersen & Gill (1982), Sellke & Siegmund (1983), Slud (1984)

For group-sequential boundaries:

Pocock (1977), O'Brien & Fleming (1979), Slud & Wei (1982), Lan & DeMets (1983), Pampallona & Tsiatis (1994) plus others (Jennison, Chang, \ldots)

For adaptive modifications:

Proschan, Follman & Waclawiw (1992), and misc. others

For decision-theoretic formulations:

Anscombe (1963), Colton (1963), Jennison (1987), Siegmund (1985 book), Freedman & Spiegelhalter (1989), Leifer (2000, thesis)

For review and Repeated Conf Int approach:

Jennison & Turnbull (1990 Stat. Sci., 2000 book)

For the procedures in this talk:

Koutsoukos, Rubinstein & Slud (2000) adaptive-accrual; Leifer & Slud (2004) 'optimal 2-look' preprint.