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Survival Models with ‘Frailties’

Variables: T; Survival times, Discrete Covariates Z;
C; Censoring Times, cond surv fen R, (c¢) given Z; = z

DATA: iid triples (min(7;, C;), I[T; < Ci], Z;)
Observable processes:

N; (t) — ][ZZ’:Z, T;<min(Cj,t)] > }/ZZ (t) = [[min<Tia C;)>t]

TRANSF. MODEL: Syz(t|z) = oxp(—G(e” A(t)))

G known , pBeR™ | A cumulative-hazard fen

PROBLEM: efficient estimation of /.

Special Cases: (1) Cox 1972: G(z) ==
(2) Frailty: unobserved random intercept By = &;, G =x
—= G(z) = —log/ooo e *dF(s)

(3) Clayton-Cuzick 1986: G(z) = ; log(1 + bx)
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Cox-Model Case , G(z)==x

Sriz(tlz) = exp (=€’ *A[)) ,  hyz(tlz) = "N ()

which is also called Proportional or Multiplicative Haz-
ards model.

Frailty

More generally, if 3*Z covariate has added to it an un-
observable random-effect intercept log¢& called frailty,

P(T>t|Z=2) = Ee(exp(—=£e”7A(t)) = exp(—=G(e?ZA(t)))

The most famous example, the Clayton-Cuzick (1986)
frailty model comes from taking £ ~ Gamma(b™1,b71),
leading to

e N (1)
1+ be”"#A(t)

Srigltlz) = (L+be™ M), hai(t]z) =

Transformation Models: ‘Accelerated-Failure’

Assume that covariates have an additive effect on trans-
formed time-variable, i.e., add 3*Z to g¢(T), where
‘neutral’ survival fen of g(T') is K (€'). Then Spz(t|z) =

P(g(T) > g(t)| Z = z) = P(g(T) > g(t)+5*z) = K(e"*H90)

has transformation-model form, for & known, g unknown.



Finite-dimensional Case

X, i=1,....n @d ~ f(x,0,)\),
BeR™, AcR? unknown , with true values (8y, \o)

logLik(B,\) = ; log f(X;, 3, \)

Profile Likelihood = logLik(3, \3)  with
restricted MLE 5\5 = argmax) logLik(3,\)

Min Kullback-Leibler Modified Profile Approach
(Severini and Wong 1992)

K(ﬁ) )‘) = Eﬂo,)\()(logf(Xlaﬁa A))
- /{logf(a:,ﬂ,)\)} f(xaﬁm)\O) dx
Define: Ag = argmaxy K(5,)

Then: Ag estimates curve Ajg

Candidate Estimator

B = argmaxg logLik(3, \g)



Key mathematical features of this approach are

e the convenience of restricting attention to nuisance
parameters such as hazards or density functions which
satisfy smoothness restrictions;

e the replacement of operator-inversion within (blocks
of ) the generalized information operator by differen-
tiation of the restricted Kullback-Leibler minimizer;
and

e diminished need for high-order consistency of estima-
tion, when consistent estimators of Kullback-Leibler
minimizers and their derivatives with respect to
structural parameters are available.

NB: Kullback-Leibler Functional
= [ (log f(x, Bo, No)) f(x, Bo, No) dz — K(5, \)

Notation:
B, v* matrix, vector transpose
v®? =vyv* rank-1 matrix

V% denotes Total Derivative



Sketch of (Finite-dimensional) Theory

Fix By, Ao and fo(z) = f(x, B, M)

Information Matrixz: Z(6,\) = (AgA Bﬁ,A)
By Caa
_ Vitlog f(x,8,\) Vi log f(x, 3, )

- (V§ﬁlogf<x,ﬂ,x> V%Qlogﬂx,ﬁ,m) folw)d

The usual Information about G for this model, defined
(as in the Cramer-Rao Inequality) as inverse of the min-
imum variance matrix for unbiased estimators of 3, is

0 —1
Iﬁ — Aﬁ()u)‘o o BEO,)\O C'507/\0 Bﬁo’)‘o

Equivalently, to test (8 = 3y, denoting ‘restricted MLE’
A as maximizer of logLik(By, A), we have efficient test-
statistic
1 U . L P
NG VslogLik(Bo, ) — By 5 (C 5.)”" Va logLik(Bo, A)]
Neyman (1959) indicated that the same efficiency for
test-statistic can be obtained much more generally, with

A replaced by ‘preliminary’ estimator consistent for A
at rate op(n~4).



Now define
Ag = argmax ) (5, )
to satisfy: V) K(8,A3) = 0

Information Ineq says: Ag, = Ao, VK(By, Ao) =0

Note that by definition of £,

Vi Vi K(Bo, M) = Epgya(Viea Vi log(f( X1, Bo, Ao)))
A B
- _I(ﬁoa )\0> - (B* C)

Differentiate implicitly (total deriv) wrt [ to find:
VT VKB )] = B+ VA, = 0

This implies ViAg = —C7'B and

(B8, A\g) is a least-favorable nuisance-parameterization

or in other words (under Ppg,»,, at B = o),
1

v (ﬁ

V' logLik (3, )‘6)) = Agono — (V5 A5))" Coyne (V5 A5)

= IB Info about [3



Theory, continued
Now assume 5\5 and its aﬁ?;ﬁj consistent for Ag
and its 27¢ partials, unif. on nbhd of gy .
Can check successively:
(A) (V})¥? logLik(3, A3) neg-def unif on 3y nbhd
(B) nt logLik(Bo,S\ﬁo) 2,0

(C) (4 unique local sol'n of V% logLik(ﬁ,S\g) = 0,

consistent for [y .

(D) n~'ValogLik(B,A5) = n™'VxlogLik(Bo, M) +
OP(ﬁ~ — o) [because —C !B = V;S\BO ]

(E) n 'VplogLik(B3,)5) = n~'VlogLik(By, M) —
Iy - (B — Bo) + op(B— Bo)

(F) V(3 = 6o) =9 5 (VslogLik(By, Ao) +
Vi logLik (5o, o) Vi Ag,)

(G) va(f — B) = N(O, (197
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oo-dim Examples & Applications

(I). Mean estimation in the location model

Xi ~ Xo(z = Bo), Bo=E(Xy)

Mo € LY(dz) compactly supported 0-mean density.

(Easy example, X efficient. Owen 1988, Qin & Lawless
1994 studied in connection with empirical likelihood.)

For G # B, Ag(x) = Mlx+06)/(1 — ax)

with « solving / rAg(x)dr = 0

Define 5\5 first at 3y using density estimator

(@) = —— 5 (@ — X+ X)) R N\ O

- nh, il
3 _ 5\@0(33—1—5) 1’5\50(33—|—5) _
M) = T Tar T ey =0



(I1). Cox model.
For QZ(t) - pZ(Z)Rz (t) exp(_GZ,ﬁoAO (t))

gt . () e Xo()
As(t) = [ Asls)ds = ; o)

Let Ao be consistent density estimate of Ao(z) = Aj(z)
(eg by smoothing and differentiating the Kaplan-Meier
cumulative-hazard estimator on data in a z = 0 data-
stratum.) Estimate gq.(t) by at-risk process Y.(t)/n,

Mlt) = 5 DY) Mg 1)/ X €T V-A)

NB. In this example, any 3 estimator pro-
duced in this way collapses to the usual Cox
Max Partial Likelihood Estimator !

(II1). Transformation/Frailty Models

In the general G transformation model case, must as-
sume for some finite time 75 with A%(taug) < oo that
all data are censored at 7.

In this model, Slud and Vonta (2002) characterize the
KC-optimizing hazard intensity Ag in its integrated form
L = Ag = J; Ag(x) dz, through the second order ODE
system:
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Example (IIT), cont’d.

dL , . v, g (s) G PA(s)
d—/\o(s) 5. e?Pq(s)G(e7PL(s)) + Q(s)

d@ y G//
in,®) = T ) Gl

dL

(70 G (PN (s)) — (€77 G (¢ L(s)) an )

subject to the initial /terminal conditions
LO) =0 , Qn) =0

Slud and Vonta (2002) show that these ODE’s have
unique solutions, smooth with respect to (3 and dif-
ferentiable in ¢, which (with Ag = L’) maximize the

functional J (3, A\g) as desired.

Consistent preliminary estimators 5\5 can be developed
by substituting for 3y, Ay in those equations (smoothed
with respect to t) consistent preliminary estimators.

PUNCHLINE: new estimator 3 = arg maxg logLik (3, 5\5)
is efficient !
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