Efficient Semiparametric Estimators via Preliminary Estimators for Kullback-Leibler Minimizers

Eric Slud, Math Dept, Univ of Maryland

(Ongoing joint project with Ilia Vonta, Univ. of Cyprus.)

OUTLINE

I. MOTIVATION — Semiparametric Frailty Problems
II. APPROACH — Finite-Dimensional Version
III. BACKGROUND LITERATURE — Profile Likelihood, Semiparametrics, Frailty Models
IV. Semiparametric Examples

V. Efficient Estimator in Frailty Case

Survival Models with 'Frailties'

Variables: T_i Survival times, Discrete Covariates Z_i C_i Censoring Times, cond surv fcn $R_z(c)$ given $Z_i = z$

DATA: iid triples $(\min(T_i, C_i), I_{[T_i \leq C_i]}, Z_i)$

Observable processes:

 $N_z^i(t) = I_{[Z_i=z, T_i \le \min(C_i, t)]}$, $Y_z^i(t) = I_{[\min(T_i, C_i) \ge t]}$

TRANSF. MODEL: $S_{T|Z}(t|z) = \exp(-G(e^{\beta' z} \Lambda(t)))$

G known , $\beta \in \mathbf{R}^m$, Λ cumulative-hazard fcn

PROBLEM: efficient estimation of β .

Special Cases: (1) Cox 1972: $G(x) \equiv x$ (2) Frailty: unobserved random intercept $\beta_0 = \xi_i$, $G \equiv x$ $\implies G(x) = -\log \int_0^\infty e^{-sx} dF(s)$ (3) Clayton-Cuzick 1986: $G(x) \equiv \frac{1}{b} \log(1 + bx)$

$\textbf{Cox-Model Case} \ , \ G(x) = x$

 $S_{T|Z}(t|z) = \exp(-e^{\beta^* z} \Lambda(t))$, $h_{T|Z}(t|z) = e^{\beta^* z} \Lambda'(t)$

which is also called *Proportional* or *Multiplicative Hazards* model.

Frailty

More generally, if $\beta^* Z$ covariate has added to it an unobservable random-effect intercept $\log \xi$ called *frailty*,

$$P(T > t \mid Z = z) = E_{\xi}(\exp(-\xi e^{\beta^* z} \Lambda(t)) \equiv \exp(-G(e^{\beta^* z} \Lambda(t)))$$

The most famous example, the **Clayton-Cuzick (1986)** frailty model comes from taking $\xi \sim Gamma(b^{-1}, b^{-1})$, leading to

$$S_{T|Z}(t|z) = (1 + be^{\beta^* z} \Lambda(t))^{-1/b}, \quad h_{T|Z}(t|z) = \frac{e^{\beta^* z} \Lambda'(t)}{1 + be^{\beta^* z} \Lambda(t)}$$

Transformation Models: 'Accelerated-Failure'

Assume that covariates have an additive effect on transformed time-variable, i.e., add $\beta^* Z$ to g(T), where 'neutral' survival fcn of g(T) is $K(e^t)$. Then $S_{T|Z}(t|z) =$

 $P(g(T) > g(t) | Z = z) = P(g(T) > g(t) + \beta^* z) = K(e^{\beta^* z + g(t)})$ has transformation-model form, for K known, q unknown.

Finite-dimensional Case

 $\begin{aligned} X_i, \quad i = 1, \dots, n \quad iid \quad \sim \quad f(x, \beta, \lambda), \\ \beta \in \mathbf{R}^m, \quad \lambda \in \mathbf{R}^d \quad \text{unknown, with true values} \ (\beta_0, \lambda_0) \end{aligned}$

$$logLik(\beta, \lambda) = \sum_{i=1}^{n} \log f(X_i, \beta, \lambda)$$

Profile Likelihood = $logLik(\beta, \hat{\lambda}_{\beta})$ with restricted MLE $\hat{\lambda}_{\beta} = arg \max_{\lambda} logLik(\beta, \lambda)$

Min Kullback-Leibler Modified Profile Approach (Severini and Wong 1992)

$$\mathcal{K}(\beta,\lambda) \equiv E_{\beta_0,\lambda_0}(\log f(X_1,\beta,\lambda))$$
$$= \int \{\log f(x,\beta,\lambda)\} f(x,\beta_0,\lambda_0) dx$$

Define: $\lambda_{\beta} = \arg \max_{\lambda} \mathcal{K}(\beta, \lambda)$

Then: $\tilde{\lambda}_{\beta}$ estimates curve λ_{β}

Candidate Estimator

 $\tilde{\beta} \equiv \arg \max_{\beta} logLik(\beta, \tilde{\lambda}_{\beta})$

Key mathematical features of this approach are

- the convenience of restricting attention to nuisance parameters such as hazards or density functions which satisfy smoothness restrictions;
- the replacement of operator-inversion within (blocks of) the generalized information operator by differentiation of the restricted Kullback-Leibler minimizer; and
- diminished need for high-order consistency of estimation, when consistent estimators of Kullback-Leibler minimizers and their derivatives with respect to structural parameters are available.

NB: Kullback-Leibler Functional

 $= \int \left(\log f(x,\beta_0,\lambda_0) \right) f(x,\beta_0,\lambda_0) \, dx \, - \, \mathcal{K}(\beta,\lambda)$

Notation:

 B^* , \mathbf{v}^* matrix, vector transpose $\mathbf{v}^{\otimes 2} = \mathbf{v}\mathbf{v}^*$ rank-1 matrix ∇^T_β denotes Total Derivative

Sketch of (Finite-dimensional) Theory

Fix β_0 , λ_0 and $f_0(x) = f(x, \beta_0, \lambda_0)$.

Information Matrix:
$$\mathcal{I}(\beta, \lambda) = \begin{pmatrix} A_{\beta,\lambda} & B_{\beta,\lambda} \\ B_{\beta,\lambda}^* & C_{\beta,\lambda} \end{pmatrix}$$

$$= -\int \begin{pmatrix} \nabla_{\beta}^{\otimes 2} \log f(x, \beta, \lambda) & \nabla_{\beta\lambda}^2 \log f(x, \beta, \lambda) \\ \nabla_{\lambda\beta}^2 \log f(x, \beta, \lambda) & \nabla_{\lambda}^{\otimes 2} \log f(x, \beta, \lambda) \end{pmatrix} f_0(x) dx$$

The usual Information about β for this model, defined (as in the Cramer-Rao Inequality) as inverse of the minimum variance matrix for unbiased estimators of β , is

$$I_{\beta}^{0} = A_{\beta_{0},\lambda_{0}} - B_{\beta_{0},\lambda_{0}}^{*} C_{\beta_{0},\lambda_{0}}^{-1} B_{\beta_{0},\lambda_{0}}$$

Equivalently, to test $\beta = \beta_0$, denoting 'restricted MLE' $\hat{\lambda}_r$ as maximizer of $logLik(\beta_0, \lambda)$, we have efficient test-statistic

$$\frac{1}{\sqrt{n}} \left[\nabla_{\beta} logLik(\beta_0, \hat{\lambda}_r) - B^*_{\beta_0, \hat{\lambda}_r} (C^*_{\beta_0, \hat{\lambda}_r})^{-1} \nabla_{\lambda} logLik(\beta_0, \hat{\lambda}_r) \right]$$

Neyman (1959) indicated that the same efficiency for test-statistic can be obtained much more generally, with $\hat{\lambda}_r$ replaced by 'preliminary' estimator consistent for λ_0 at rate $o_P(n^{-1/4})$.

Now define

 $\lambda_{\beta} = \arg \max_{\lambda} \mathcal{K}(\beta, \lambda)$

to satisfy: $\nabla_{\lambda} \mathcal{K}(\beta, \lambda_{\beta}) = 0$

Information Ineq says: $\lambda_{\beta_0} = \lambda_0$, $\nabla_{\beta} \mathcal{K}(\beta_0, \lambda_0) = 0$

Note that by definition of \mathcal{K} ,

$$\nabla_{\beta,\lambda} \nabla^*_{\beta,\lambda} \mathcal{K}(\beta_0,\lambda_0) = E_{P\beta_0,\lambda_0} (\nabla_{\beta,\lambda} \nabla^*_{\beta,\lambda} \log(f(X_1,\beta_0,\lambda_0)))$$
$$= -\mathcal{I}(\beta_0,\lambda_0) = -\begin{pmatrix} A & B \\ B^* & C \end{pmatrix}$$

Differentiate implicitly (total deriv) wrt β to find:

$$-\nabla_{\beta}^{T} \left[\nabla_{\lambda}^{*} \mathcal{K}(\beta, \lambda_{\beta})\right] = B + C \nabla_{\beta}^{*} \lambda_{\beta} = 0$$

This implies $\nabla'_{\beta} \lambda_{\beta} = -C^{-1} B$ and

(β, λ_{β}) is a **least-favorable** nuisance-parameterization

or in other words (under P_{β_0,λ_0} , at $\beta = \beta_0$),

$$\operatorname{Var}\left(\frac{1}{\sqrt{n}} \nabla_{\beta}^{T} \log \operatorname{Lik}(\beta, \lambda_{\beta})\right) = A_{\beta_{0}, \lambda_{0}} - (\nabla_{\beta}^{*} \lambda_{\beta_{0}})^{*} C_{\beta_{0}, \lambda_{0}} (\nabla_{\beta}^{*} \lambda_{\beta_{0}})$$
$$= I_{\beta}^{0} \qquad Info \ about \quad \beta$$

Theory, continued

Now assume $\tilde{\lambda}_{\beta}$ and its $\frac{\partial^2}{\partial \beta_i \partial \beta_j}$ consistent for λ_{β} and its 2^{nd} partials, unif. on nbhd of β_0 .

Can check successively:

(A) $(\nabla_{\beta}^{T})^{\otimes 2} \log Lik(\beta, \tilde{\lambda}_{\beta})$ neg-def unif on β_{0} nbhd

(**B**) $n^{-1} logLik(\beta_0, \tilde{\lambda}_{\beta_0}) \xrightarrow{P} 0$

(C) $\tilde{\beta}$ unique local sol'n of $\nabla_{\beta}^{T} \log Lik(\beta, \tilde{\lambda}_{\beta}) = 0$, consistent for β_{0} .

(D)
$$n^{-1} \nabla_{\lambda} logLik(\tilde{\beta}, \tilde{\lambda}_{\tilde{\beta}}) = n^{-1} \nabla_{\lambda} logLik(\beta_0, \lambda_0) + o_P(\tilde{\beta} - \beta_0)$$
 [because $-C^{-1}B = \nabla^*_{\beta} \tilde{\lambda}_{\beta_0}$]

(E)
$$n^{-1} \nabla_{\beta} logLik(\tilde{\beta}, \tilde{\lambda}_{\tilde{\beta}}) = n^{-1} \nabla_{\beta} logLik(\beta_0, \lambda_0) - I_{\beta}^0 \cdot (\tilde{\beta} - \beta_0) + o_P(\tilde{\beta} - \beta_0)$$

 $\begin{aligned} \mathbf{(F)} \quad \sqrt{n} \left(\tilde{\beta} - \beta_0 \right) &= (I^0_\beta)^{-1} \frac{1}{\sqrt{n}} \left(\nabla_\beta \log Lik(\beta_0, \lambda_0) + \nabla'_\lambda \log Lik(\beta_0, \lambda_0) \nabla_\beta \lambda_{\beta_0} \right) \end{aligned}$

(G) $\sqrt{n} \left(\tilde{\beta} - \beta_0 \right) \stackrel{\mathcal{D}}{\approx} \mathcal{N}(\mathbf{0}, \ (I_{\beta}^0)^{-1})$

LITERATURE

Profile Likelihood

Cox, D. R. & Reid, N. (1987) **JRSSB** McCullagh, P. and Tibshirani, R. (1990) **JRSSB** Severini, T. and Wong, W. (1992) Ann Stat

Semiparametrics

Bickel, Klaassen, Ritov, & Wellner: 1993 Book
Cox, D. R. (1972) 'Cox-Model' paper JRSSB
Owen, A. (1988) Biometrika: Empirical likelihood
Qin, J. & Lawless, J. (1994) Ann Stat: EL & GEE
Murphy & van der Vaart (2000) JASA

Transformation/Frailty Models Cheng, Wei, & Ying (1995) Biometrika Clayton and Cuzick (1986) ISI Centenary Session Slud, E. and Vonta, I. (2002) submitted Parner (1998) Ann. Stat.

∞ -dim Examples & Applications

(I). Mean estimation in the location model

$$X_i \sim \lambda_0(x - \beta_0), \quad \beta_0 = E(X_1)$$

 $\lambda_0 \in L^1(dx)$ compactly supported 0-mean density.

(Easy example, \overline{X} efficient. Owen 1988, Qin & Lawless 1994 studied in connection with *empirical likelihood*.)

For
$$\beta \neq \beta_0$$
, $\lambda_\beta(x) = \lambda_0(x+\beta)/(1-\alpha x)$
with α solving $\int x \lambda_\beta(x) dx = 0$

Define $\tilde{\lambda}_{\beta}$ first at β_0 using density estimator

$$\tilde{\lambda}_{\beta_0}(x) = \frac{1}{n h_n} \sum_{i=1}^n \phi((x - X_i + \overline{X})/h_n), \quad h_n \searrow 0$$
$$\tilde{\lambda}_{\beta}(x) = \frac{\tilde{\lambda}_{\beta_0}(x + \beta)}{1 - \tilde{\alpha}x}, \quad \int \frac{x \tilde{\lambda}_{\beta_0}(x + \beta)}{1 - \tilde{\alpha}x} dx = 0$$

(II). Cox model.

For
$$q_z(t) = p_Z(z)R_z(t)\exp(-e^{z'\beta_0}\Lambda_0(t))$$

 $\Lambda_\beta(t) \equiv \int_0^t \lambda_\beta(s) \, ds = \frac{\sum_z q_z(x) e^{z'\beta_0} \lambda_0(x)}{\sum_z e^{z'\beta} q_z(x)}$

Let $\tilde{\lambda}_0$ be consistent density estimate of $\lambda_0(x) = \Lambda'_0(x)$ (eg by smoothing and differentiating the Kaplan-Meier cumulative-hazard estimator on data in a z = 0 datastratum.) Estimate $q_z(t)$ by *at-risk process* $Y_z(t)/n$,

$$\tilde{\lambda}_{\beta}(t) = \sum_{z} e^{z'\beta_0} Y_z(t) \tilde{\lambda}_{\beta_0}(t) / \sum_{z} e^{z'\beta} Y_z(t)$$

NB. In this example, any $\tilde{\beta}$ estimator produced in this way collapses to the usual Cox Max Partial Likelihood Estimator !

(III). Transformation/Frailty Models

In the general G transformation model case, must assume for some finite time τ_0 with $\Lambda^0(tau_0) < \infty$ that all data are censored at τ_0 .

In this model, Slud and Vonta (2002) characterize the \mathcal{K} -optimizing hazard intensity λ_{β} in its integrated form $L = \Lambda_{\beta} = \int_{0}^{\cdot} \lambda_{\beta}(x) dx$, through the second order ODE system:

Example (III), cont'd.

$$\frac{dL}{d\Lambda_0}(s) = \frac{\sum_z e^{z'\beta_0} q_z(s) G'(e^{z'\beta_0}\Lambda_0(s))}{\sum_z e^{z'\beta} q_z(s) G'(e^{z'\beta}L(s)) + Q(s)}$$
$$\frac{dQ}{d\Lambda_0}(s) = \sum_z e^{z'\beta} q_z(s) \frac{G''}{G'}|_{e^{z'\beta}L(s)} \cdot$$
$$(e^{z'\beta_0} G'(e^{z'\beta_0}\Lambda_0(s)) - (e^{z'\beta} G'((e^{z'\beta}L(s)) \frac{dL}{d\Lambda_0}(s)))$$

subject to the initial/terminal conditions

L(0) = 0 , $Q(\tau_0) = 0$

Slud and Vonta (2002) show that these ODE's have unique solutions, smooth with respect to β and differentiable in t, which (with $\lambda_{\beta} \equiv L'$) maximize the functional $\mathcal{J}(\beta, \lambda_{\beta})$ as desired.

Consistent preliminary estimators $\tilde{\lambda}_{\beta}$ can be developed by substituting for β_0 , Λ_0 in those equations (smoothed with respect to t) consistent preliminary estimators.

PUNCHLINE: new estimator
$$\tilde{\beta} = \arg \max_{\beta} logLik(\beta, \tilde{\lambda}_{\beta})$$

is efficient !