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Survival Models with ‘Frailties’

Variables: Ti Survival times, Discrete Covariates Zi

Ci Censoring Times, cond surv fcn Rz(c) given Zi = z

DATA: iid triples (min(Ti, Ci), I[Ti ≤ Ci], Zi)

Observable processes:

N i
z(t) = I[Zi=z, Ti≤min(Ci,t)] , Y i

z (t) = I[min(Ti, Ci)≥t]

TRANSF. MODEL: ST |Z(t|z) = exp(−G(eβ′z Λ(t)))

G known , β ∈ Rm , Λ cumulative-hazard fcn

PROBLEM: efficient estimation of β.

Special Cases: (1) Cox 1972: G(x) ≡ x

(2) Frailty: unobserved random intercept β0 = ξi , G ≡x
=⇒ G(x) = − log

∫ ∞
0

e−sxdF (s)

(3) Clayton-Cuzick 1986: G(x) ≡ 1
b log(1 + bx)
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Cox-Model Case , G(x) = x

ST |Z(t|z) = exp (− eβ
∗zΛ(t)) , hT |Z(t|z) = eβ

∗zΛ′(t)

which is also called Proportional orMultiplicative Haz-

ards model.

Frailty

More generally, if β∗Z covariate has added to it an un-
observable random-effect intercept log ξ called frailty,

P (T > t |Z = z) = Eξ( exp(−ξ eβ
∗zΛ(t)) ≡ exp(−G(eβ∗zΛ(t)))

The most famous example, theClayton-Cuzick (1986)

frailty model comes from taking ξ ∼ Gamma(b−1, b−1),

leading to

ST |Z(t|z) = (1+beβ
∗zΛ(t))−1/b , hT |Z(t|z) =

eβ
∗zΛ′(t)

1 + beβ∗zΛ(t)

Transformation Models: ‘Accelerated-Failure’

Assume that covariates have an additive effect on trans-

formed time-variable, i.e., add β∗Z to g(T ), where

‘neutral’ survival fcn of g(T ) is K(et). Then ST |Z(t|z) =

P (g(T ) > g(t) |Z = z) = P (g(T ) > g(t)+β∗z) = K(eβ
∗z+g(t))

has transformation-model form, forK known, g unknown.



Finite-dimensional Case

Xi, i = 1, . . . , n iid ∼ f (x, β, λ),

β ∈ Rm, λ ∈ Rd unknown , with true values (β0, λ0)

logLik (β, λ) =
n
∑

i=1
log f (Xi, β, λ)

Profile Likelihood = logLik (β, λ̂β) with

restricted MLE λ̂β = argmaxλ logLik (β, λ)

Min Kullback-Leibler Modified Profile Approach

(Severini and Wong 1992)

K(β, λ) ≡ Eβ0,λ0
( log f (X1, β, λ))

=
∫

{log f (x, β, λ)} f (x, β0, λ0) dx

Define: λβ = argmaxλ K(β, λ)
Then: λ̃β estimates curve λβ

Candidate Estimator

β̃ ≡ argmaxβ logLik (β, λ̃β)
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Key mathematical features of this approach are

• the convenience of restricting attention to nuisance
parameters such as hazards or density functions which

satisfy smoothness restrictions;

• the replacement of operator-inversion within (blocks
of) the generalized information operator by differen-

tiation of the restricted Kullback-Leibler minimizer;

and

• diminished need for high-order consistency of estima-
tion, when consistent estimators of Kullback-Leibler

minimizers and their derivatives with respect to

structural parameters are available.

NB: Kullback-Leibler Functional

=
∫

( log f (x, β0, λ0)) f (x, β0, λ0) dx − K(β, λ)

Notation:

B∗ , v∗ matrix, vector transpose

v⊗2 = vv∗ rank-1 matrix

∇T
β denotes Total Derivative
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Sketch of (Finite-dimensional) Theory

Fix β0, λ0 and f0(x) = f (x, β0, λ0).

Information Matrix : I(β, λ) =







Aβ,λ Bβ,λ

B∗β,λ Cβ,λ







= −
∫







∇⊗2
β log f (x, β, λ) ∇2

βλ log f (x, β, λ)

∇2
λβ log f (x, β, λ) ∇⊗2

λ log f (x, β, λ)





 f0(x)dx

The usual Information about β for this model, defined

(as in the Cramer-Rao Inequality) as inverse of the min-

imum variance matrix for unbiased estimators of β, is

I0
β = Aβ0,λ0

− B∗β0,λ0
C−1

β0,λ0
Bβ0,λ0

Equivalently, to test β = β0, denoting ‘restricted MLE’

λ̂r as maximizer of logLik (β0, λ), we have efficient test-

statistic
1√
n

[

∇βlogLik (β0, λ̂r) − B∗β0,λ̂r
(C∗β0,λ̂r

)−1∇λ logLik (β0, λ̂r)
]

Neyman (1959) indicated that the same efficiency for

test-statistic can be obtained much more generally, with

λ̂r replaced by ‘preliminary’ estimator consistent for λ0

at rate oP (n
−1/4).
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Now define

λβ = argmax λ K(β, λ)

to satisfy: ∇λ K(β, λβ) = 0

Information Ineq says: λβ0
= λ0 , ∇β K(β0, λ0) = 0

Note that by definition of K,

∇β,λ ∇∗β,λ K(β0, λ0) = EPβ0,λ0
(∇β,λ ∇∗β,λ log(f (X1, β0, λ0)))

= −I(β0, λ0) = −






A B

B∗ C







Differentiate implicitly (total deriv) wrt β to find:

−∇T
β [∇∗λK(β, λβ))] = B + C∇∗β λβ = 0

This implies ∇′β λβ = −C−1B and

(β, λβ) is a least-favorable nuisance-parameterization

or in other words (under Pβ0,λ0
, at β = β0),

Var







1√
n
∇T

β logLik (β, λβ)





 = Aβ0,λ0
− (∇∗β λβ0

)∗Cβ0,λ0
(∇∗β λβ0

)

= I0
β Info about β
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Theory, continued

Now assume λ̃β and its ∂2

∂βi∂βj
consistent for λβ

and its 2nd partials, unif. on nbhd of β0 .

Can check successively:

(A) (∇T
β )
⊗2 logLik (β, λ̃β) neg-def unif on β0 nbhd

(B) n−1 logLik (β0, λ̃β0
) P−→ 0

(C) β̃ unique local sol’n of ∇T
β logLik (β, λ̃β) = 0,

consistent for β0 .

(D) n−1∇λlogLik (β̃, λ̃β̃) = n−1∇λlogLik (β0, λ0) +

oP ( β̃ − β0) [because −C−1B = ∇∗βλ̃β0
]

(E) n−1∇βlogLik (β̃, λ̃β̃) = n−1∇βlogLik (β0, λ0)−
I0
β · (β̃ − β0) + oP (β̃ − β0)

(F)
√
n (β̃ − β0) = (I

0
β)
−1 1√

n (∇β logLik (β0, λ0) +

∇′λ logLik (β0, λ0)∇βλβ0
)

(G)
√
n (β̃ − β0)

D≈ N (0, (I0
β)
−1)
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∞-dim Examples & Applications
(I). Mean estimation in the location model

Xi ∼ λ0(x− β0), β0 = E(X1)

λ0 ∈ L1(dx) compactly supported 0-mean density.

(Easy example, X efficient. Owen 1988, Qin & Lawless

1994 studied in connection with empirical likelihood.)

For β 6= β0, λβ(x) = λ0(x + β)/(1− αx)

with α solving
∫

xλβ(x) dx = 0

Define λ̃β first at β0 using density estimator

λ̃β0
(x) =

1

nhn

n
∑

i=1
φ((x−Xi +X)/hn) , hn ↘ 0

λ̃β(x) =
λ̃β0
(x + β)

1− α̃x
,

∫ x λ̃β0
(x + β)

1− α̃x
dx = 0
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(II). Cox model.

For qz(t) = pZ(z)Rz(t) exp(−ez′β0Λ0(t))

Λβ(t) ≡
∫ t

0
λβ(s) ds =

∑

z qz(x) e
z′β0 λ0(x)

∑

z ez
′β qz(x)

Let λ̃0 be consistent density estimate of λ0(x) = Λ
′
0(x)

(eg by smoothing and differentiating the Kaplan-Meier

cumulative-hazard estimator on data in a z = 0 data-

stratum.) Estimate qz(t) by at-risk process Yz(t)/n,

λ̃β(t) =
∑

z
ez

′ β0 Yz(t) λ̃β0
(t) /

∑

z
ez

′ β Yz(t)

NB. In this example, any β̃ estimator pro-

duced in this way collapses to the usual Cox

Max Partial Likelihood Estimator !

(III). Transformation/Frailty Models

In the general G transformation model case, must as-

sume for some finite time τ0 with Λ
0(tau0) <∞ that

all data are censored at τ0.

In this model, Slud and Vonta (2002) characterize the

K-optimizing hazard intensity λβ in its integrated form

L = Λβ =
∫ ·
0 λβ(x) dx, through the second order ODE

system:

10



Example (III), cont’d.

dL

dΛ0
(s) =

∑

z e
z′β0 qz(s)G

′(ez
′β0Λ0(s))

∑

z ez
′β qz(s)G′(ez

′βL(s)) + Q(s)

dQ

dΛ0
(s) =

∑

z
ez

′β qz(s)
G′′

G′
|ez′βL(s) ·

(ez
′β0 G′(ez

′β0Λ0(s)) − (ez
′β G′((ez

′βL(s))
dL

dΛ0
(s))

subject to the initial/terminal conditions

L(0) = 0 , Q(τ0) = 0

Slud and Vonta (2002) show that these ODE’s have

unique solutions, smooth with respect to β and dif-

ferentiable in t, which (with λβ ≡ L′) maximize the
functional J (β, λβ) as desired.

Consistent preliminary estimators λ̃β can be developed

by substituting for β0, Λ0 in those equations (smoothed

with respect to t) consistent preliminary estimators.

Punchline: new estimator β̃ = argmaxβ logLik (β, λ̃β)

is efficient !
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