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Discussion of “Impact of Frequentist and
Bayesian Methods on Survey Sampling
Practice: A Selective Appraisal” by
J. N. K. Rao
Eric Slud

I would like to congratulate Professor Rao on having
produced an overview of survey methodology which
is at the same time a broad-ranging prospectus of cur-
rent research and also an impressive retrospective from
a modern viewpoint of the early historical develop-
ments. He shows us in broad terms where the various
approaches to survey methodology have been success-
ful and where they cannot quite be relied upon without
further development.

Most of the paper is not specifically directed at
contrasting the Bayesian and frequentist viewpoints.
The most important distinctions for Rao seem to be
between model-dependent and design-based methods,
and Bayes methods are faulted in Rao’s chosen ter-
rain of “the large-scale production of official statis-
tics from complex surveys” primarily for using models
where models are not absolutely necessary. He takes
for granted that models will be used in adjusting for
nonresponse, in his formulation largely through cal-
ibration, and in small area estimation. The faults he
finds with unnecessarily model-dependent survey es-
timation methods are:

• design-inconsistency (of model-based BLUP under
misspecified models, and in other examples, in Sec-
tion 3.2);

• requiring different sets of predictor variables for dif-
ferent attributes of interest (in Section 3.3);

and in Section 4.2, in relation to the nonparametric
Bayesian and pseudo-Bayesian methods relying heav-
ily on exchangeability, for their

• lack of generalizability to complex survey designs
with clustering and unequal probability weighting.

Eric Slud is Professor, Statistics Program, Department of
Mathematics, University of Maryland, College Park,
Maryland 20742, USA (e-mail: evs@math.umd.edu).

Like many authors in survey sampling, Rao faults
model-based analyses because of possible model mis-
specification. This discussion highlights aspects and
consequences of model misspecification under the
headings of Rao’s paper.

1. MODEL MISSPECIFICATION IN LINEAR
REGRESSION AND CALIBRATION

In Section 3.1 of his paper, Rao considers the be-
havior of a calibration estimator (of a population total)
when the calibration constraints involve some but not
all of the predictor variables entering a true superpopu-
lation model. The context is a superpopulation in which
the regression model

Yi = β ′Xi + γ ′Zi + εi(1)

holds for all units i in the frame U , with auxiliary vari-
ables Xi,Zi known for all population units, and where
it is desired to estimate the total tY = ∑

i∈U Yi based
on a probability sample of units i ∈ S with first-order
inclusion weights di = 1/πi . [In Rao’s example, the
weights di are all equal, Xi = (1, xi)

′, and Zi = x2
i , for

a scalar auxiliary variable xi .] A calibration estimator
of tY might be based on the variables Xi alone, that
is, on

∑
i∈S wiYi where the modified weights wi are

determined by minimizing
∑

i∈S (wi − di)
2/di subject

to the constraints
∑

i∈S wiXi = ∑
i∈U Xi . As described

by Rao, it turns out that this calibration estimator is
equivalent to the generalized regression (GREG) esti-
mator based on the weights di and the predictor vari-
able Xi . In the setting with constant di , this estimator
would be the unweighted model-based regression esti-
mator based on predictor Xi .

As Rao suggests, calibration might be based on a
subset of the appropriate predictor variables when the
same universal calibration constraints are used over
many different choices of response variables. In the
context (1) above, there are three ways in which this
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calibration estimator based on variables Xi might be
inadequate. First, the weights di used in the estima-
tor might not be the correct ones: for example, when
the unweighted regression estimator is used but the
design weights are not constant, this is a familiar
kind of wrong-model inconsistency that arises in Sec-
tion 3.2. Second, the calibration totals

∑
i∈U Xi fixed

in defining the estimator might not be correct: this
may be viewed as a failure of the frame-coverage
model. [A superpopulation-based treatment of linear
calibration with inaccurate totals is given in Slud and
Thibaudeau (2010), Proposition 1, in a more gen-
eral setting also involving nonresponse adjustment and
weight-compression.] Third, as mentioned in Rao’s pa-
per with reference to Rao, Jocelyn and Hidiroglou
(2003), the coverage of the confidence intervals for tY
based on this calibration estimator might not be close
to nominal in moderate samples. The first two of these
three cases represent actual design inconsistency. How-
ever, if the weights and calibration totals are correct,
then the calibration estimator based on Xi is still a
model-assisted GREG estimator and therefore design-
consistent under general conditions, but the problem-
atic coverage of its confidence intervals seems to be
due to slow convergence to the limiting normal asymp-
totic distribution, which Rao, Jocelyn and Hidiroglou
(2003) found to be related to skewness of the resid-
uals from the incorrect linear regression model of Yi

on Xi when (1) holds with nonzero γ . This failure
of moderate-sample coverage of confidence intervals
due to slow distributional convergence is more subtle
than design-inconsistency, but may still be important
in practice in surveys where regressions are done sep-
arately in each stratum, since the whole sample might
be large while the individual strata might all have mod-
erate sample size.

2. DIAGNOSTICS IN SMALL AREA ESTIMATION

One survey-sampling task where all practitioners
would agree on the necessity of explicit models is
Small Area Estimation. When survey estimates are re-
quired for small domains where little or no sample is
available, models perform a function of driving direct
estimates toward covariate-defined predictors, provid-
ing extrapolated estimates in domains where there is
no sample and shrinking direct estimates for covariate-
defined similar domains together. The most conve-
nient small area estimation models, whether hierarchi-
cal Bayes or generalized-linear with aggregate-level
random effects, have the same form for all domains in

the frame population. For any specific proposed model,
this is an assumption that requires checking and may
prove crucial to the quality of small area estimates
or predictions. Yet there is remarkably little work on
goodness-of-fit checking in small area models, and
hardly any mention of the topic in the present paper,
due in part to Rao’s focus in Section 5 on Hierarchical
Bayes methods.

Goodness-of-fit and model-checking methods have
been studied in the survey literature, with important
contributions by Rao himself. Chi-squared tests based
on survey cross-classifications were studied in a se-
ries of papers leading up to Rao and Scott (1984),
and are widely cited but perhaps not much used in
model-checking. A different chi-squared test, based
on estimated cell-frequencies in multi-way tables and
suited to small area models, was given by Jiang, Lahiri
and Wu (2001), work which was extended to tests for
mixed linear model diagnostics studied in Jiang (2001),
again in a form which could be used in assessing the fit
of a small area model. In a different direction, the pa-
per of Eltinge and Yansaneh (1997) is unusual in pro-
viding diagnostics for nonresponse adjustment cells in
surveys. Apart from these papers, diagnostics are often
borrowed from parametric nonsurvey statistics in indi-
vidual survey applications.

The Census Bureau’s Small Area Income and Pover-
ty Estimates (SAIPE) program, mentioned by Rao as
a source of examples for small area methodology, has
provided an extensive test-bed for small area model-
checking techniques (Citro and Kalton, 2000). As de-
scribed in Rao [(2003), Chapter 7] and Citro and
Kalton (2000), the county-level log-count model for
poor children had the Fay–Herriot form

yi = x′
iβ + ui + ei,

(2)
ui ∼ N (0, σ 2), ei ∼ N (0, ve/ni),

where yi is the direct-estimated log-count of poor chil-
dren in county i, xi is a vector of covariate predic-
tors, ni is the number of sampled households, ui is
the county-level random effect, and ei are random sur-
vey errors with variances assumed known. Because
roughly 20% of sampled counties, with positive ni ,
yielded no poor children and therefore would have pro-
vided direct estimates of 0 poor children, the loga-
rithms of these estimates are undefined and those coun-
ties were dropped from the model-fitting analysis. De-
spite the very effective small area predictions generated
by fitting unknown parameters β to the set of sampled
counties with well-defined yi , it remains questionable



264 E. SLUD

whether that fitted model (2) should be used to predict
numbers of poor children in counties where no poor
children were seen. This is an issue of model speci-
fication, which has been studied for a number of years
(Slud, 2003, 2004) and for which diagnostics have now
been developed in Slud and Maiti (2010) by regard-
ing the dropped counties as having been left-censored
(or left-truncated) because they are dropped when the
count of sampled poor children is below a threshold.
These diagnostics seem to show that the model (2) ad-
equately describes the counties with well-defined yi ,
but that the same model cannot adequately predict in
which counties there would be any poor children in
a sample. The upshot is that no model is yet known
which can account for counts of sampled poor children
in all counties.

3. SPECIFICATION OF MULTILEVEL SURVEY
ANALYSES

The kind of model-checking described in the previ-
ous paragraph is important because, while it is com-
mon for survey data sets (including aggregated area-
level data sets used in small area modeling) to be highly
cross-classified by covariates as well as unit response
versus nonresponse, there is no guarantee that a single
model can account well for all portions of the cross-
classified population. Such survey data naturally sug-
gest multilevel models, but models which differ in form
on different subsets of the population would lead to
complicated interaction terms and random effects.

Rao’s paper treats multilevel modeling in a frequen-
tist design-based setting in Section 3.3, under the gen-
eral heading of estimation in complex surveys; yet
when discussing unified models in a small area con-
text, he accepts the value of hierarchical-Bayes mod-
els. Why is that? In general complex surveys, it seems
likely that simultaneous hierarchical-Bayes (HB) mod-
els could be formulated for unit nonresponse, frame
coverage errors, and survey responses. If reasonable
rules could be developed for defining prior parameters,
then a Bayesian analysis is not on its face less theoreti-
cally acceptable than a complicated weight-adjustment
procedure. But perhaps one serious objection is that
each response variable would require its own Bayesian
model. Is the greater value of HB models for small area
prediction due to the acceptability in that context of a
separate model for each survey response variable?

In the small area context, my own view is that
hierarchical-Bayes models with objective priors—or
priors chosen by the matching strategies discussed in

Section 4—might very well serve the smoothing func-
tion of shrinking direct estimators from similar areas
toward one another. But I feel much less comfortable
with this class of models being used to extrapolate
small area predictions to areas with very small or zero
sample sizes.

A difficulty with multilevel models, for both fre-
quentists and Bayesians, is that different hierarchi-
cal error structures can sometimes be almost impos-
sible to distinguish with useful power for moderately
large sample sizes, as may be revealed by information-
matrix calculations. Nevertheless, there are data sets
where (generalized) likelihood ratio testing for the
presence of certain error structure components can be
rather decisive. In a spatial small area problem, Op-
somer et al. (2008) modeled the alkalinity of lakes in
a survey of lakes in terms of elevation and radial P-
spline basis functions in spatial coordinates, with the
spline-term coefficients as random effects. In addition,
independent random effects for slightly aggregated ge-
ographic units were considered and found to be impor-
tant after likelihood ratio testing. It will not always be
possible to reach such firm conclusions, and this kind
of model-comparison may be hard to reproduce in a
Bayesian framework.

4. MISCELLANEOUS COMMENTS

All of us, frequentists and Bayesians, are tied to
models in the sense that statistical theory generally has
very little to say about the validity of likelihood-based
inferences when the parametric model family does not
contain the model actually governing the data.

For sample survey data, frequentists have always
found it difficult to say what is an appropriate like-
lihood. [However, Rao’s paper mentions in Section 5
fascinating work in Wu and Rao (2006), Rao and Wu
(2010), attempting to interpret empirical-likelihood
survey methods as a Bayesian nonparametric survey
likelihood.] A design-based view of finite-population
sampling forces us to view the ensemble of survey at-
tributes as nuisance parameters, about which we are
entitled to assume only a sort of large-superpopulation
stability. A frequentist approach to the high nuisance-
parameter dimension is to base inferences on estimat-
ing equations, which is how Rao presents in Section 3.3
the “model-assisted” pseudo-likelihood method of esti-
mating frame-population descriptive parameters, such
as regression coefficients via GREG, and such as the
multilevel variance-component parameters that are the
target of multilevel survey estimation. As far as I can
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tell, this approach has no Bayesian counterpart, so the
survey analyst who wants the protection of correct esti-
mation for virtually any superpopulation configuration
of survey attributes has little recourse but to follow
design-based theory. That seems to be the essence of
the argument in favor of design-based survey methods
when models are not absolutely necessary because of
missing data.

Weight adjustment for calibration and model-based
nonresponse adjustment can also be viewed as esti-
mating equation methods. Like other such methods,
weight-adjustments rely for their validity on correct-
ness of at least some model assumptions: as Rao men-
tions, the most we can hope for in this enterprise
is a kind of “double robustness” in which design-
consistency for the weighted survey estimator obtains
when either the model used for nonresponse adjust-
ment or a population-wide regression-type model is
correct. See Kang and Shafer (2007) for related ex-
position of the double-robustness concept, and Slud
and Thibaudeau (2010) for analogous results on a fur-
ther development of the optimization-based weight-
adjustment method of Deville and Särndal (1992)
to cover simultaneous weight-adjustment for nonre-
sponse, calibration and weight-compression.

Survey estimation is often an exercise in prediction,
and it is known in many statistical problems that ex-
cellent predictions can be provided through estimating
models which are too simple to pass goodness-of-fit
checks. This observation has not yet been formulated
with mathematical care—no one knows how to charac-
terize which target parameters and which combinations
of true and oversimplified models could work in this
way—but frequentists and Bayesians would all benefit
from a rigorous result of this type.
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