
Histograms & Densities
We have seen in class various pictures of theoretical distribution functions

and also some pictures of empirical distribution functions based on data. The
definition of this concept is as follows. If X1, , ldots, ,Xn represents a data
sample (sequence of independent random variables which are all ‘identically
distributed’ in the sense of having the same, possibly unknown, distribution
function F = FX , then the empirical distribution function based on
the data is a distribition function which has jumps at observed values Xi of
size equal to 1/n multiplied by the number of sample points equal to that
value. In symbols,

F̂n(t) =
1

n

n∑

i=1

I[Xi≤t]

where as before, IA is an ‘indicator’ equal to 1 if the property A is true,
and 0 otherwise. The point of this definition is that nF̂n(t) is the sum of
n independent identically distributed binary (‘coin-toss’) random variables,
all with the same probability p = P (Xi ≤ t) = F (t) of being 1; thus

n · F̂n(t) ∼ Binom(n, F (t))

and the Law of Large Numbers (and Central Limit Theorem too) imply that
F̂n(t) ≈ F (t) with probability close to 1, when n gets large. We have
seen pictures of this in class (also on the web-page) for a few examples. Plots
of empirical d.f.’s from data overlaid with theoretical d.f.’s are among the
best simple ways of checking visually that the data really fit the theoretical
d.f. well.

We now define a data-display concept — the scaled relative frequency

histogram — which gives us a more refined look at the distribution of a
large sample of data. Again, if we start with a sample X1, . . . , Xn, such a
histogram is a picture defined through the following steps. (See also Chapter
1 of the textbook.)

Step 1. Mark off the data axis into a number L equal-length intervals
which cover the whole range (from min to max) of the data points. The
number L should vary with n but not be too small (5 or 6 is a kind of
minimum): one theoretically based proposal is to let L = [n2/5] (rounded
down to the nearest integer). There are now L + 1 points ak and L
intervals (ak, ak+1]. Let h be the width of each interval.

1



Step 2. Tally the numbers nk of data points falling in the intervals,

nk =
n∑

i=1

I[ak<Xi≤ak+1] , k = 1, . . . , L

Step 3. Draw a bar-chart with a bar of constant height nk/(nh) over
the interval (ak, ak+1].

Note that the total area in the bars of such a picture is 1, and it is
this scaling feature which makes them so informative in plots overlaid with
theoretical density functions.

We now proceed to illustrate the usefulness of these histograms as a way of
verifying that simulated data really have the distributions they are designed
to or that they are supposed to according to theoretical results:

(i) in a simulation of n=1000 exponentially distributed variables (Figure
1 below);

(ii) in a simulation of n=1000 weighted sums Z1 + 2Z2 − 3Z3 of iid

Normal(0,1) triples (Figure 2 below); and

(iii) in a simulation of n=10000 averages of 60 Uniform[0,1] variables
(Figure 3 below).

The key point about scaled histograms is that the area in the histogram
bar over the class-interval (ak, ak+1] is the base (equal to h) multiplied by the
height (equal to nk/(nh)), that is, the area in the bar is h·(nk/(nh)) = nk/n.
But when n is really large, we know from the Law of Large Numbers that
the relative frequency

nk/n =
1

n

n∑

i=1

I[ak<Xi≤ak+1]

is with high probability going to be close to the probability of any one of
these indicators being 1, or P (ak < X1 ≤ ak+1) =

∫ ak+1

ak
fX(x)dx, which is

equal to the area under the true density curve over the same interval. This

reasoning shows why the tops of the histogram bars must agree

closely with the density function graph over each class interval:

the area under both of them must be very nearly equal when n
is large, according to the Law of Large Numbers.
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Figure 1: Scaled relative frequency histogram of 1000 Expon(1) simulated
random values, broken into 36 intervals and plotted overlaid with the Ex-
pon(1) density function f(x) = e−x, x ≥ 0.
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Figure 2: Scaled relative frequency histogram of 1000 simulated random
values Z1 + 2Z2 − 3Z3, Zi ∼ N (0, 1), broken into 36 intervals and plotted
overlaid with the N (0, 14) density.
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