Solutions to HW1, Stat 401 Spring 2011

(1). (a) Here $S = X_1 + \cdots + X_{100}$, where the X_i random variables are independent identically distributed (iid) with density f(x) = 2x for $0 \le x \le 1$. Therefore

$$E(S) = E(X_1) + \dots + E(X_{100}) = 100 E(X_1)$$
, $Var(S) = 100 Var(X_1)$

where

$$E(X_1) = \int_0^1 x \, 2x \, dx = \left(2x^3/3\right)\Big|_0^1 = 2/3$$
$$\operatorname{Var}(X_1) = E(X_1^2) - (2/3)^2 = \int_0^1 x^2 \, 2x \, dx - 4/9 = 1/2 - 4/9 = 1/18$$

The Central Limit Theorem says we should treat S as being approximately normal with its proper mean and variance, i.e., $S \approx \mathcal{N}(200/3, 50/9)$. Therefore the probabilities in (a) are (to three decimal places) 0.240, 0.760, 0, 0, where for example the second one is figured as

$$P(65 < S < 75) = P(\frac{65 - 66.667}{\sqrt{50/9}} < \frac{S - 66.667}{\sqrt{50/9}} < \frac{75 - 66.667}{\sqrt{50/9}})$$

 $\approx \Phi(3.536) - \Phi(-.707) = 0.760$.

(b). Here $N = \sum_{i=1}^{100} I_{[X_i > 0.6]} \sim \text{Binom}(100, p)$ with mean 100p and variance 100p(1-p), where $p = P(X_1 > 0.6) = \int_{.6}^{1} 2x \, dx = 0.64$.

(2).=Sim.3 (a) Here $n = 1000, P(U_i > 0.6) = 0.4$, so $N = \sum_{i=1}^{1000} I_{[U_i > 0.6]} \sim \text{Binom}(1000, .4).$

(b). So by the Law of Large Numbers, with high probability $N/1000 \approx E(I_{[U_1>0.4]}) = 0.4$.

(c) Here also the law of large numbers says the average is close with high probability to the expectation $E(e^{-U_1}) = \int_0^1 e^{-u} du = 1 - e^{-1}$.

(d). The distribution function is $F_{\exp(-U)}(t) P(e^{-U} \leq t) = P(U \geq (-log(t))) = 1 + \log(t)$ for 0 < t < 1/e. The corresponding density, on the same interval, is f(t) = F'(t) = 1/t.

(3). (a) $E(S_1) = (1/20) 40 (\vartheta/2) = \vartheta$ which shows that S_1 is unbiased for ϑ .

(b). As suggested in the Hint: for $0 < t < \vartheta$, $F_{S_2}(t) = P(S_2 \le t) = P(X_1 \le t, X_2 \le t, \dots, X_{40} \le t) = (P(X_1 \le t))^{40} = (t/\vartheta)^{40}$, which implies that the density of S_2 is $f(t) = F'_{S_2}(t) = 40t^{39}/\vartheta^{40}$ for $0 < t < \vartheta$. Therefore

$$E(S_2) = \frac{40}{\vartheta^{40}} \int_0^\vartheta t^{40} dt = \frac{40\,\vartheta^{41}}{41\,\vartheta^{40}} = \frac{40}{41}\,\vartheta$$

from which it follows immediately that $(41/40) S_2$ is an unbiased estimator for ϑ .

(4). (a) Since the variance of a Uniform $[0, \vartheta]$ random variable U_i is $\vartheta^2/12$, we conclude

std.err(S₁) =
$$\left(\operatorname{Var}(S_1) \right)^{1/2} \Big|_{\vartheta = S_1} = \frac{1}{20} \left(40 \left(S_1 \right)^2 / 12 \right)^{1/2} = S_1 / \sqrt{30}$$

(b) Using the density for S_2 above, we find

$$\operatorname{Var}(S_2) = \frac{40}{\vartheta^{40}} \int_0^\vartheta t^{41} dt - (40\vartheta/41)^2 = \vartheta^2 (40/42 - (40/41)^2)$$

So std.err $(41S_2/40) = (\frac{41}{40}S_2)/\sqrt{40\cdot 42}$. (Note that the second unbiased estimator has much smaller standard error than the first !)

(5). Here n = 1000, and $P(0 < Y_1 \le 1/2) = P(1/2 < Y_1 \le 1) = 1/6$, $P(1 < Y_1 \le 3/2) = P(3/2 < Y_1 \le 2) = 1/3$, so $N_1, N_2 \sim \text{Binom}(1000, 1/6)$, $N_3, N_4 \sim \text{Binom}(1000, 1/3)$, and

$$E(\frac{N_1}{1000}) = E(\frac{N_2}{1000}) = \frac{1}{6}, \quad E(\frac{N_3}{1000}) = E(\frac{N_4}{1000}) = \frac{1}{3}$$
$$\operatorname{Var}(\frac{N_1}{1000}) = \operatorname{Var}(\frac{N_2}{1000}) = \frac{1}{6000}, \quad \operatorname{Var}(\frac{N_3}{1000}) = \operatorname{Var}(\frac{N_4}{1000}) = \frac{1}{3000}$$