Solutions to HW1, Stat 401 Spring 2011

(1). (a) Here $S=X_{1}+\cdots+X_{100}$, where the X_{i} random variables are independent identically distributedf (iid) with density $f(x)=2 x$ for $0 \leq x \leq 1$. Therefore

$$
E(S)=E\left(X_{1}\right)+\cdots+E\left(X_{100}\right)=100 E\left(X_{1}\right) \quad, \quad \operatorname{Var}(S)=100 \operatorname{Var}\left(X_{1}\right)
$$

where

$$
\begin{gathered}
E\left(X_{1}\right)=\int_{0}^{1} x 2 x d x=\left.\left(2 x^{3} / 3\right)\right|_{0} ^{1}=2 / 3 \\
\operatorname{Var}\left(X_{1}\right)=E\left(X_{1}^{2}\right)-(2 / 3)^{2}=\int_{0}^{1} x^{2} 2 x d x-4 / 9=1 / 2-4 / 9=1 / 18
\end{gathered}
$$

The Central Limit Theorem says we should treat S as being approximately normal with its proper mean and variance, i.e., $S \approx \mathcal{N}(200 / 3,50 / 9)$. Therefore the probabilities in (a) are (to three decimal places) 0.240, 0.760, 0, 0, where for example the second one is figured as

$$
P(65<S<75)=P\left(\frac{65-66.667}{\sqrt{50 / 9}}<\frac{S-66.667}{\sqrt{50 / 9}}<\frac{75-66.667}{\sqrt{50 / 9}}\right)
$$

$\approx \Phi(3.536)-\Phi(-.707)=0.760$.
(b). Here $N=\sum_{i=1}^{100} I_{\left[X_{i}>0.6\right]} \sim \operatorname{Binom}(100, p)$ with mean $100 p$ and variance $100 p(1-p)$, where $p=P\left(X_{1}>0.6\right)=\int_{.6}^{1} 2 x d x=0.64$.
(2). $=\operatorname{Sim} .3 \quad$ (a) Here $n=1000, P\left(U_{i}>0.6\right)=0.4, \quad$ so $\quad N=$ $\sum_{i=1}^{1000} I_{\left[U_{i}>0.6\right]} \sim \operatorname{Binom}(1000, .4)$.
(b). So by the Law of Large Numbers, with high probability $N / 1000 \approx$ $E\left(I_{\left[U_{1}>0.4\right]}\right)=0.4$.
(c) Here also the law of large numbers says the average is close with high probability to the expectation $E\left(e^{-U_{1}}\right)=\int_{0}^{1} e^{-u} d u=1-e^{-1}$.
(d). The distribution function is $F_{\exp (-U)}(t) P\left(e^{-U} \leq t\right)=P(U \geq$ $(-\log (t)))=1+\log (t)$ for $0<t<1 / e$. The corresponding density, on the same interval, is $f(t)=F^{\prime}(t)=1 / t$.
(3). (a) $E\left(S_{1}\right)=(1 / 20) 40(\vartheta / 2)=\vartheta$ which shows that S_{1} is unbiased for ϑ.
(b). As suggested in the Hint: for $0<t<\vartheta, \quad F_{S_{2}}(t)=P\left(S_{2} \leq t\right)=$ $P\left(X_{1} \leq t, X_{2} \leq t, \ldots, X_{40} \leq t\right)=\left(P\left(X_{1} \leq t\right)\right)^{40}=(t / \vartheta)^{40}$, which implies that the density of S_{2} is $f(t)=F_{S_{2}}^{\prime}(t)=40 t^{39} / \vartheta^{40}$ for $0<t<\vartheta$. Therefore

$$
E\left(S_{2}\right)=\frac{40}{\vartheta^{40}} \int_{0}^{\vartheta} t^{40} d t=\frac{40 \vartheta^{41}}{41 \vartheta^{40}}=\frac{40}{41} \vartheta
$$

from which it follows immediately that $(41 / 40) S_{2}$ is an unbiased estimator for ϑ.
(4). (a) Since the variance of a Uniform $[0, \vartheta]$ random variable U_{i} is $\vartheta^{2} / 12$, we conclude

$$
\operatorname{std} . \operatorname{err}\left(S_{1}\right)=\left.\left(\operatorname{Var}\left(S_{1}\right)\right)^{1 / 2}\right|_{\vartheta=S_{1}}=\frac{1}{20}\left(40\left(S_{1}\right)^{2} / 12\right)^{1 / 2}=S_{1} / \sqrt{30}
$$

(b) Using the density for S_{2} above, we find

$$
\operatorname{Var}\left(S_{2}\right)=\frac{40}{\vartheta^{40}} \int_{0}^{\vartheta} t^{41} d t-(40 \vartheta / 41)^{2}=\vartheta^{2}\left(40 / 42-(40 / 41)^{2}\right)
$$

So std.err $\left(41 S_{2} / 40\right)=\left(\frac{41}{40} S_{2}\right) / \sqrt{40 \cdot 42}$. (Note that the second unbiased estimator has much smaller standard error than the first !)
(5). Here $n=1000$, and $P\left(0<Y_{1} \leq 1 / 2\right)=P\left(1 / 2<Y_{1} \leq 1\right)=$ $1 / 6, \quad P\left(1<Y_{1} \leq 3 / 2\right)=P\left(3 / 2<Y_{1} \leq 2\right)=1 / 3, \quad$ so $\quad N_{1}, N_{2} \sim$ $\operatorname{Binom}(1000,1 / 6), \quad N_{3}, N_{4} \sim \operatorname{Binom}(1000,1 / 3)$, and

$$
\begin{gathered}
E\left(\frac{N_{1}}{1000}\right)=E\left(\frac{N_{2}}{1000}\right)=\frac{1}{6}, \quad E\left(\frac{N_{3}}{1000}\right)=E\left(\frac{N_{4}}{1000}\right)=\frac{1}{3} \\
\operatorname{Var}\left(\frac{N_{1}}{1000}\right)=\operatorname{Var}\left(\frac{N_{2}}{1000}\right)=\frac{1}{6000}, \quad \operatorname{Var}\left(\frac{N_{3}}{1000}\right)=\operatorname{Var}\left(\frac{N_{4}}{1000}\right)=\frac{1}{3000}
\end{gathered}
$$

