
Solutions to HW2, Stat 401 Spring 2011

(1). #20, p. 251. (a). In this problem, we maximize over p the binomial
probability mass function evaluated at X, by calculating

d

dp
log

((n

X

)
pX (1 − p)n−X

)
=

X

p
− n − X

1 − p
=

X − np

p(1 − p)

which is decreasing in p and is 0 only when p = p̂ = X/n. So here
p̂ = 3/20. (b) Since the binomial expectation is E(X) = np, we have
E(p̂) = E(X/n) = p, and the MLE is unbiased in this case. (c) The MLE
of a function of the parameter is always obtained as the same function of the
MLE, so in this case the MLE of (1 − p)5 is (1 − .15)5 = .4437.

(2). #28, p. 251. (a). Now we are to maximize the log-likelihood

log
( n∏
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−1 e−X2

i /(2ϑ)
)

=
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log(Xi) − n log ϑ − 1
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i

The second derivative in ϑ is always negative, and the first derivative is
− n/ϑ

∑n
i=1 X2

i /(2ϑ2), which is 0 only when ϑ = ϑ̂ = (2n)−1 ∑n
i=1 X2

i .
For the data in Exercise 15,

∑n
i=1 X2

i = 1490.11, with n = 10, so ϑ̂ =
1490.11/20 = 74.51. Since E(X2

1 ) = 2ϑ, the unbiased estimator in Exercise
15 was exactly the same as the estimator found here. [That is all this part of

the exercise asked you to do. But in Ex. 15, since E(X1) = E(X̄) =
√

πϑ/2,

the method-of-moments estimator 2(X̄)2/π which on this set of data was
equal to 81.29.]

(b). For this type of Rayleigh random variable, we find the median m =
m(ϑ) as a function of ϑ by solving

1

2
= F (m,ϑ) =

∫ m

0

x

ϑ
e−x2/(2ϑ dx =

∫ m/
√

ϑ

0
y e−y2/2 dy = 1 − e−m2/(2ϑ)

This implies m(ϑ) = (2ϑ ln 2)1/2, and as before we find the MLE of this
function of ϑ by substituting ϑ̂ for ϑ. With the data of problem 15, we

find the MLE of the theoretical median is
√

2 ln 2(74.51) = 10.16, which is
actually a very reasonable value for the data since the sample median — the
average of the middle order-statistics — is (10.23 + 10.95)/2 = 10.59.
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(3). (a) The number of the 2000 independently generated intervals which
contain the true µ0 is a Binom(2000, 0.9) random variable, with expected
value 2000 · 0.9 = 1800.

(b). This N ∼ Binom(2000, .1).

(c). Probability for a Binom(2000, .1) random variable to fall in [185, 220]
is given by the Central Limit Theorem as approximately

Φ((220 − 2000(.1))/
√

2000(.1)(.9)) − Φ((184 − 2000(.1))/
√

2000(.1)(.9)) =
0.8155. The continuity-corrected normal approximate value is 0.8128 and
the exact binomial probability is

pbinom(220,2000,.1)-pbinom(184,2000,.1)

[1] 0.811931

(d). This event says that a Binom(20, .1) random variable is 0 (i.e., the
number of failures of coverage is 0 out of 20), which is approximately the
Poisson(2) probability of 0, or 0.1353. The exact binomial probability of
0 out of 20 is (0.9)20 = 0.1216.

(4). #8, p. 262. Here the point is that the CI we build — based on
specified probabilities α1, α2 of µ0 respectively falling above and below
the interval endpoints — is obtained by solving the simultaneous pair of
inequalities (which hold with probability 1 − α)

− zα1/2

σ√
n

< X̄ − µ < zα2/2

σ√
n

to obtain the asymmetric level-(1−α) CI (X̄−zα2/2
σ√
n
, X̄ +zα1/2

σ√
n
). (b).

The width of the interval found in (a) is (zα1/2 + zα2/2)σ/
√

n, while the
width of the standard symmetric interval is 2zα/2 σ/

√
n. You can see in the

specific example α = .05, α1 = .0125, α2 = .0375 that the symmetric one is
shorter, since 2z.025 = 3.920, while z.0125 + z.0375 = 1.780 + 2.241 = 4.022.

(5). #10, p. 262. The idea of this problem is that for Expon(λ) random
variables, as in Example 7.5, 2λ

∑n
i=1 Xi ∼ χ2

2n = Gamma(n, 1/2), so that
with probability 1−α, 2λ

∑n
i=1 Xi falls between the α/2 and 1−α/2 quan-

tiles of χ2
2n. (a). In this problem, n = 15,

∑15
i=1 Xi = 63.2, and the quantiles

either from the ν = 30 line of the table on p. 673 or from the R values
qchisq(.025,30), qchisq(.975,30), are 16.79, 46.98. Our confidence in-
terval comes by solving the inequalities 16.79 < 2λ(63.2) < 46.98 to obtain
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the interval .133 < λ < .372. (b). The only change in this part is that
the quantiles become qchisq(.005,30), qchisq(.995,30) or 13.79, 53.67,
leading to the 99% interval for λ as (13.79/(263.2)), 53.67/(2(63.2))) =
(.109, .425). (c) The standard deviation for Expon(λ) lifetimes is 1/λ, and
the 95% interval for this parameter is derived from part (a) as (1/.372, 1/.133)
= (2.69, 7.52).

(6). #18, p. 269. Lower (one-sided) 90% large-sample confidence
bound is x̄− z0.1 s/

√
n = 4.25 − 1.282(1.30)/

√
78 = 4.061.

(7). #20, p. 269. This problem calls for a large-sample two-sided 99%
confidence interval for a binomial proportion based on n = 4722, p̂ = .15,

or .15 ± z.005

√
.15(.85)/4722 = (.137, .163). The fancier CI from formula

(7.10) in this problem is (.137, .164), hardly any different because n is so
large.

(8). R code to input the data, create histograms, overlay normal densi-
ties, and provide CI’s is:

## part (a)

> logdat = scan("http://www-users.math.umd.edu/~evs/s401/lgprcp.dat")

> hist(logdat, nclass=20, prob=T, xlab="log precip") ### I like this one

curve(dnorm(x, mean(logdat), sd(logdat)), add=T, col="blue")

### very non-normal -- asymmetric and multimodal

> mean(logdat)+c(-1,1)*qt(.975,69)*sqrt(0.25/70) ### (b) Normal t-interval

[1] 3.323130 3.561572

> mean(logdat)+c(-1,1)*qnorm(.975)*sqrt(0.25/70) ### (c) Normal z-interval

[1] 3.325221 3.559481

> mean(logdat)+c(-1,1)*qnorm(.975)*sd(logdat)/sqrt(70)

[1] 3.318552 3.566150 ## (d) non-normal unknown; known same as (c)
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