Solutions to HW2, Stat 401 Spring 2011

(1). #20, p. 251. (a). In this problem, we maximize over p the binomial
probability mass function evaluated at X, by calculating

d n _ X n—X X —np
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which is decreasing in p and is 0 only when p = p = X/n. So here
p = 3/20. (b) Since the binomial expectation is FE(X) = np, we have
E(p) = E(X/n) = p, and the MLE is unbiased in this case. (c¢) The MLE
of a function of the parameter is always obtained as the same function of the
MLE, so in this case the MLE of (1 —p)® is (1 —.15)° = .4437.

(2). #28, p. 251. (a). Now we are to maximize the log-likelihood

log (I_I(XZ V! e_Xiz/(w)) =) log(X;) —nlogd — % > X7
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The second derivative in ¢ is always negative, and the first derivative is
—n/0 Y, X7/(29%), whichis 0 only when ¢ =4 = (2n)~" YL, X7.

For the data in Exercise 15, Y1, X? = 1490.11, with n = 10, so 9 =

1490.11/20 = 74.51. Since E(X?) =20, the unbiased estimator in Exercise
15 was exactly the same as the estimator found here. [That is all this part of

the exercise asked you to do. But in Ex. 15, since E(X;) = E(X) = /70/2,

the method-of-moments estimator 2(X)2/m which on this set of data was
equal to 81.29.]

(b). For this type of Rayleigh random variable, we find the median m =
m(9) as a function of ¥ by solving

! = F(m,9) = /m z e 20 gy — /m/\/q§ ye_y2/2 dy = 1— e~/ (29)
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This implies m(¥) = (20 In2)'/2, and as before we find the MLE of this
function of 1 by substituting Y for 9. With the data of problem 15, we
find the MLE of the theoretical median is /2In2(74.51) = 10.16, which is
actually a very reasonable value for the data since the sample median — the
average of the middle order-statistics — is (10.23 4+ 10.95)/2 = 10.59.



(3). (a) The number of the 2000 independently generated intervals which
contain the true po is a Binom(2000,0.9) random variable, with expected
value 2000 - 0.9 = 1800.

(b). This N ~ Binom (2000, .1).

(c). Probability for a Binom(2000,.1) random variable to fall in [185, 220]
is given by the Central Limit Theorem as approximately
(220 — 2000(.1))/,/2000(.1)(.9)) — P((184 — 2000(.1))/,/2000(.1)(.9)) =
0.8155. The continuity-corrected normal approximate value is 0.8128 and
the exact binomial probability is

pbinom(220,2000, .1)-pbinom(184,2000, .1)
[1] 0.811931

(d). This event says that a Binom(20,.1) random variable is 0 (i.e., the
number of failures of coverage is 0 out of 20), which is approximately the
Poisson(2) probability of 0, or 0.1353. The exact binomial probability of
0 out of 20 is (0.9)* = 0.1216.

(4). #8, p. 262. Here the point is that the CI we build — based on
specified probabilities a3, as of pg respectively falling above and below
the interval endpoints — is obtained by solving the simultaneous pair of
inequalities (which hold with probability 1 — «)

o _ o
—Zal/zﬁ < X-—p< Zaz/Qﬁ
to obtain the asymmetric level-(1—a) CI (X — z4, /2 T X+ 20,2 \/Lﬁ) (b).
The width of the interval found in (a) is (za,/2 + Zay/2) 0/v/1, while the
width of the standard symmetric interval is 2z,/20/y/n. You can see in the
specific example « = .05, a; = .0125, ap = .0375 that the symmetric one is
shorter, since 2z 095 = 3.920, while z 195 + 20375 = 1.780 + 2.241 = 4.022.

(5). #10, p. 262. The idea of this problem is that for Expon(\) random
variables, as in Example 7.5, 2\ 37, X; ~ x3, = Gamma(n, 1/2), so that
with probability 1—a, 2A Y7, X; falls between the o/2 and 1 —a/2 quan-
tiles of x2.. (a). In this problem, n = 15, 31, X; = 63.2, and the quantiles
either from the » = 30 line of the table on p. 673 or from the R values
qchisq(.025,30), qchisq(.975,30), are 16.79, 46.98. Our confidence in-
terval comes by solving the inequalities 16.79 < 2A(63.2) < 46.98 to obtain
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the interval .133 < A < .372. (b). The only change in this part is that
the quantiles become qchisq(.005,30), qchisq(.995,30) or 13.79,53.67,
leading to the 99% interval for A as (13.79/(263.2)), 53.67/(2(63.2))) =
(.109,.425). (c) The standard deviation for Expon(A) lifetimesis 1/A, and
the 95% interval for this parameter is derived from part (a) as (1/.372, 1/.133)
= (2.69, 7.52).

(6). #18, p. 269. Lower (one-sided) 90% large-sample confidence
bound is 7 — 201 8/v/n = 4.25 — 1.282(1.30)/y/78 = 4.061.

(7). #20, p. 269. This problem calls for a large-sample two-sided 99%
confidence interval for a binomial proportion based on n = 4722, p = .15,
or .15 %+ zg054/.15(.85)/4722 = (.137, .163). The fancier CI from formula

(7.10) in this problem is (.137, .164), hardly any different because n is so
large.

(8). R code to input the data, create histograms, overlay normal densi-
ties, and provide CI’s is:

## part (a)
> logdat = scan("http://www-users.math.umd.edu/ evs/s401/1gprcp.dat")
> hist(logdat, nclass=20, prob=T, xlab="log precip") ### I like this one
curve (dnorm(x, mean(logdat), sd(logdat)), add=T, col="blue")
### very non-normal -- asymmetric and multimodal
> mean(logdat)+c(-1,1)*qt(.975,69)*sqrt(0.25/70) ### (b) Normal t-interval
[1] 3.323130 3.561572
> mean(logdat)+c(-1,1)*qnorm(.975)*sqrt(0.25/70) ### (c) Normal z-interval
[1] 3.325221 3.559481
> mean(logdat)+c(-1,1)*qnorm(.975)*sd(logdat)/sqrt(70)
[1] 3.318552 3.566150 ## (d) non-normal unknown; known same as (c)



