Solutions to HW3, Stat 401 Spring 2011

Note: since $\# 38(\mathrm{~b})$ on p .277 is a tolerance interval, a topic I said we skipped, the 5 points for that problem are extra-credit. So the denominator for this HW is 75 points.
(1). You were asked to exhibit CI's for 100 batches of $\operatorname{Gamma}(1.3,2.6)$ of size 40.Code and plots are given below using ideas from Rscripts/Confint.RLog.
(a). The calculations for the three intervals are as follows:

```
tmp = array(rgamma(4000,1.3,2.6), c(100,40)) ### 100 batches
xbar = c(tmp %*% rep(1/40,40))
SD = apply(tmp,1,sd)
CUp.Int = xbar+1.96*SD/sqrt(40); CLo.Int = xbar-1.96*SD/sqrt(40)
twidth = qt(.975,39)*SD/sqrt(40)
```

(b) plot(1:100, CUp.Int[1:100], col="blue", ylim=c(0,.8))
points(1:100, CLo.Int[1:100], col="red")
abline (h=0.5)
for(i in 1:100) lines(c(i,i), c(CLo.Int[i], CUp.Int[i]),
lty=3, col="brown")

In my example, 5 intervals failed to cover 0.5: 4 too low, 1 too high.
(c). If the intervals were working perfectly, then the number of times μ_{0} falls outside the interval out of 100 should be $\operatorname{Binom}(100, .05) \approx$ Poisson(5), which has expected value 5 and probability of ≤ 1 equal to $\operatorname{pbinom}(1,100, .05)=$ 0.04 , and probability of ≥ 9 equal to $1-\operatorname{pbinom}(8,100, .05)=.065$. So numbers of 1 or fewer or 9 or more are a little unlikely.
(2),\#27 p. 270 plus extra R steps. Two examples of intervals of these types for various $(n, k)=(78,40)$ and $(77,39)$, are as follows:

```
> c(CI7.Q=CI7.10(40,78), CI7.N=CI7.11(40,78), CIp27 = CI7.10(42,82))
    CI7.Q1 CI7.Q2 CI7.N1 CI7.N2 CIp271 CIp272
0.4039270 0.6205105 0.4018959 0.6237451 0.4059077 0.6173910
> c(CI7.Q=CI7.10(39,77), CI7.N=CI7.11(39,77), CIp27 = CI7.10(41,81))
    CI7.Q1 CI7.Q2 CI7.N1 CI7.N2 CIp271 CIp272
0.3972001 0.6151698 0.3948236 0.6181634 0.3995078 0.6122788
```

The first three are very close to one another, as are the second three. But we combine all possible k 's, using their appropriate probability weights, in calculating coverage probabilities through the function Cover described in the Confint. RLog script. For the requested (n, p) combinations, this gives:

```
> Cover(78,.57)
    CI7.10 CI7.11 CIp27
[1,] 0.9566156 0.9358466 0.9566156 ## CIp27 and CI7.10 best
> Cover(47,.53)
    CI7.10 CI7.11 CIp27
[1,] 0.934841 0.934841 0.9590036 ## CIp27 best
> Cover(46,.16)
    CI7.10 CI7.11 CIp27
[1,] 0.9424594 0.9592895 0.8931543 ## CI7.10 best, CIp27 awful!
```

Finally, to give examples of slightly different n 's which give very different ordering for the closeness of these intervals' coverage probabilities outcomes to .95 , consider:

```
> Cover (77,.57)
    CI7.10 CI7.11 CIp27 ## CI7.10 and CI7.11 equally good
[1,] 0.9409148 0.9409148 0.9585606 ## CIp27 may be slightly better
> Cover(51,.47)
    CI7.10 CI7.11 CIp27
0.9315672 0.9224678 0.9585676 ### CIp27 clearly best.
> Cover(43, .17)
    CI7.10 CI7.11 CIp27
0.9459912 0.9611444 0.8985123 ### CI7.10 best; CIp27 still awful.
```

(3), \# 22 p .269 . The 99% one-sided upper-bounding confidence interval for unknown binomial proportion p based on $\hat{p}=X / n=0.072$ for $n=487$ is $(0,0.0991$ according to formula (7.11) and ($0,0.1041$) based on formula (7.10). The difference is not large, but that latter should be regarded as slightly more accurate. (Either one is sufficient for full credit on the exercise, with 2 points extra for those who compared both.)
(4), \#26, p. 269. In this problem $\bar{X}=4.06$. The 2 -sided $1-\alpha$ level confidence interval consists of all values λ between the two roots of
the quadratic equality $(\bar{X}-\lambda)^{2}-z_{\alpha / 2}^{2}(\lambda / n)=0$, that is, the CI is $\bar{X}+$ $z_{\alpha / 2}^{2} /(2 n) \pm \sqrt{\bar{X} z_{\alpha / 2}^{2} / n+z_{\alpha / 2}^{4} /\left(4 n^{2}\right)}$. If you thought that n would be very large, you can discard terms with higher powers of n in the denominator, giving the approximate large-sample interval $\bar{X} \pm z_{\alpha / 2} \sqrt{\bar{X} / n}$. (Either answer will get full credit.)
(5), \#38, p. 277. (a). This one is a prediction interval based on assumed normally distributed observations: a 95% interval is $.0635 \pm 1.96(.0065) \sqrt{26 / 25)}=(.0505, .0765)$. Note that in the terminology of the problem, the width of the interval gives information about precision, and the confidence level is the 'reliability'.
(b). This one is a tolerance interval: since that is a topic I said we skipped. the 5 points for this part are extra credit. To give an interval so large that the probability is .95 that 95% or more of all pieces of laminate have warpage falling in the interval, use Table A. 6 to obtain the interval $.0635 \pm(2.631)(.0065)=(.0464, .0806)$.
(6), \#44, p. 280. The 95% interval for σ^{2}, directly from the book's formula using $n=9$, is , is $\left(8\left(2.81^{2}\right) / 17.535,8\left(2.81^{2}\right) / 2.180\right)=(3.603,28.98)$, awfully wide. The CI for σ is obtained by taking square roots, and is (1.898, 5.383).
(7), \#52, p. 281. (a) With assumed-normal arsenic concentrations, the $95 \% \mathrm{CI}$ is $24.3 \pm t_{4,025} 4.1 / \sqrt{5}=(19.21,29.39)$. The interpretation must be stated carefully: retrospectively, after the observations we cannot make a probability statement about an unknown constant. But prospectively, before observing the data, if we intended to use this type of t-interval, we could say that the true unknown concentration would fall in the interval.
(b). The 90% upper confidence bound for σ is $\left(4(4.1)^{2} / .711\right)^{1 / 2}=9.72$.
(c) The 95% prediction interval for the next water specimen is $24.3 \pm$ $2.776(4.1) \sqrt{6 / 5}=(11.83,36.77)$.
(7), \#12, pp. 294. (a). H_{0} is that the average braking distance μ is ≥ 120. (b). Only \bar{X} values which are too small indicates incompatibility of the data with H_{0}, so the answer is the region $R_{2}=\{\mathbf{x}: \bar{x} \leq 115.2\}$.
(c). Significance level of R_{2} is $\Phi((115.2-120) /(10 / 6))=0.002$.
(d). This is the power (probability of correct rejection) at $\mu=115$, which
is $\Phi\left((115.2-115 /(10 / 6))=.548\right.$. (e). Under H_{0}, the variable Z is $\mathcal{N}(0,1)$. With the region $\{z \leq-2.33\}$, the significance level is $\Phi(-2.33)=.01$, and that of the region $\{z \leq-2.88\}$ is $\Phi(-2.88)=.002$. (Note: (115.2$120) /(10 / 6)=-2.88$, so this last region is $\left.R_{2}!\right)$

