
Solutions to HW3, Stat 401 Spring 2011

Note: since #38(b) on p.277 is a tolerance interval, a topic I said we
skipped, the 5 points for that problem are extra-credit. So the denominator
for this HW is 75 points.

(1). You were asked to exhibit CI’s for 100 batches of Gamma(1.3,2.6) of
size 40.Code and plots are given below using ideas from Rscripts/Confint.RLog.

(a). The calculations for the three intervals are as follows:

tmp = array(rgamma(4000,1.3,2.6), c(100,40)) ### 100 batches

xbar = c(tmp %*% rep(1/40,40))

SD = apply(tmp,1,sd)

CUp.Int = xbar+1.96*SD/sqrt(40); CLo.Int = xbar-1.96*SD/sqrt(40)

twidth = qt(.975,39)*SD/sqrt(40)

(b) plot(1:100, CUp.Int[1:100], col="blue", ylim=c(0,.8))

points(1:100, CLo.Int[1:100], col="red")

abline(h=0.5)

for(i in 1:100) lines(c(i,i), c(CLo.Int[i],CUp.Int[i]),

lty=3, col="brown")

In my example, 5 intervals failed to cover 0.5: 4 too low, 1 too high.

(c). If the intervals were working perfectly, then the number of times µ0

falls outside the interval out of 100 should be Binom(100, .05) ≈ Poisson(5),
which has expected value 5 and probability of≤ 1 equal to pbinom(1, 100, .05) =
0.04, and probability of ≥ 9 equal to 1 − pbinom(8, 100, .05) = .065. So
numbers of 1 or fewer or 9 or more are a little unlikely.

(2),#27 p.270 plus extra R steps. Two examples of intervals of these
types for various (n, k) = (78, 40) and (77, 39), are as follows:

> c(CI7.Q=CI7.10(40,78), CI7.N=CI7.11(40,78), CIp27 = CI7.10(42,82))

CI7.Q1 CI7.Q2 CI7.N1 CI7.N2 CIp271 CIp272

0.4039270 0.6205105 0.4018959 0.6237451 0.4059077 0.6173910

> c(CI7.Q=CI7.10(39,77), CI7.N=CI7.11(39,77), CIp27 = CI7.10(41,81))

CI7.Q1 CI7.Q2 CI7.N1 CI7.N2 CIp271 CIp272

0.3972001 0.6151698 0.3948236 0.6181634 0.3995078 0.6122788
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The first three are very close to one another, as are the second three. But
we combine all possible k’s, using their appropriate probability weights, in
calculating coverage probabilities through the function Cover described in
the Confint.RLog script. For the requested (n, p) combinations, this gives:

> Cover(78,.57)

CI7.10 CI7.11 CIp27

[1,] 0.9566156 0.9358466 0.9566156 ## CIp27 and CI7.10 best

> Cover(47,.53)

CI7.10 CI7.11 CIp27

[1,] 0.934841 0.934841 0.9590036 ## CIp27 best

> Cover(46,.16)

CI7.10 CI7.11 CIp27

[1,] 0.9424594 0.9592895 0.8931543 ## CI7.10 best, CIp27 awful!

Finally, to give examples of slightly different n’s which give very different
ordering for the closeness of these intervals’ coverage probabilities outcomes
to .95, consider:

> Cover(77,.57)

CI7.10 CI7.11 CIp27 ## CI7.10 and CI7.11 equally good

[1,] 0.9409148 0.9409148 0.9585606 ## CIp27 may be slightly better

> Cover(51,.47)

CI7.10 CI7.11 CIp27

0.9315672 0.9224678 0.9585676 ### CIp27 clearly best.

> Cover(43,.17)

CI7.10 CI7.11 CIp27

0.9459912 0.9611444 0.8985123 ### CI7.10 best; CIp27 still awful.

(3), # 22 p. 269. The 99% one-sided upper-bounding confidence in-
terval for unknown binomial proportion p based on p̂ = X/n = 0.072 for
n = 487 is (0, 0.0991 according to formula (7.11) and (0, 0.1041) based on
formula (7.10). The difference is not large, but that latter should be re-
garded as slightly more accurate. (Either one is sufficient for full credit on
the exercise, with 2 points extra for those who compared both.)

(4), #26, p. 269. In this problem X̄ = 4.06. The 2-sided 1 − α
level confidence interval consists of all values λ between the two roots of
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the quadratic equality (X̄ − λ)2 − z2
α/2 (λ/n) = 0, that is, the CI is X̄ +

z2
α/2/(2n) ±

√
X̄z2

α/2/n + z4
α/2/(4n

2). If you thought that n would be very

large, you can discard terms with higher powers of n in the denominator,

giving the approximate large-sample interval X̄± zα/2

√
X̄/n. (Either answer

will get full credit.)

(5), #38, p. 277. (a). This one is a prediction interval based on assumed
normally distributed observations: a 95% interval is

.0635 ± 1.96(.0065)
√

26/25) = (.0505, .0765). Note that in the terminology
of the problem, the width of the interval gives information about precision,
and the confidence level is the ‘reliability’.

(b). This one is a tolerance interval: since that is a topic I said we
skipped. the 5 points for this part are extra credit. To give an interval so
large that the probability is .95 that 95% or more of all pieces of laminate
have warpage falling in the interval, use Table A.6 to obtain the interval
.0635± (2.631)(.0065) = (.0464, .0806).

(6), #44, p. 280. The 95%interval for σ2, directly from the book’s for-
mula using n = 9, is , is (8(2.812)/17.535, 8(2.812)/2.180) = (3.603, 28.98),
awfully wide. The CI for σ is obtained by taking square roots, and is
(1.898, 5.383).

(7), #52, p. 281. (a) With assumed-normal arsenic concentrations, the
95% CI is 24.3 ± t4,.0254.1/

√
5 = (19.21, 29.39). The interpretation must

be stated carefully: retrospectively, after the observations we cannot make a
probability statement about an unknown constant. But prospectively, before
observing the data, if we intended to use this type of t-interval, we could say
that the true unknown concentration would fall in the interval.

(b). The 90% upper confidence bound for σ is (4(4.1)2/.711)1/2 = 9.72.

(c) The 95% prediction interval for the next water specimen is 24.3 ±
2.776(4.1)

√
6/5 = (11.83, 36.77).

(7), #12, pp. 294. (a). H0 is that the average braking distance µ is
≥ 120. (b). Only X̄ values which are too small indicates incompatibility
of the data with H0, so the answer is the region R2 = {x : x̄ ≤ 115.2}.
(c). Significance level of R2 is Φ((115.2− 120)/(10/6)) = 0.002.
(d). This is the power (probability of correct rejection) at µ = 115, which
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is Φ((115.2−115/(10/6)) = .548. (e). Under H0, the variable Z is N (0, 1).
With the region {z ≤ −2.33}, the significance level is Φ(−2.33) = .01, and
that of the region {z ≤ −2.88} is Φ(−2.88) = .002. (Note: (115.2 −
120)/(10/6) = −2.88, so this last region is R2 !)

4


