Solutions to HW4, Stat 401 Spring 2011

(1). \#10, pp. 293-4. (a). $H_{0}: \mu=1300, H_{A}: \mu>1300$. (b). Under $H_{0}, \quad \bar{X} \sim \mathcal{N}\left(1300,60^{2} / 20\right)$, and α type I error probability $=$ $1-\Phi((1331.26-1300) /(60 / \sqrt{20})=.010$. (c). When $\mu=1350$, $l l \bar{X} \sim$ $\mathcal{N}\left(1350,60^{2} / 20\right)$, and the probability of (wrongly) accepting the null is $\Phi((1331.26-1350) /(60 / \sqrt{20})=.081$. (d). The one-sided test analogous to (b) with $\alpha=.05$ is: reject when $\bar{X} \geq 1300+z .0560 / \sqrt{20}=1322.07$. Using this test, our type II error probability in (c) would be $\beta=\Phi((1322.07-$ $1350) /(60 / \sqrt{20})=.019$. (e). The rejection region in (b) corresponds to $Z \geq(1331.26-1300) / 13.42=2.33\left(=z_{.01}\right)$.
(2). $\# 20$, p. 304. One-sided hypothesis, rejecting if \bar{X} is too small. The Minitab output already shows p-value . 016 , so we would reject for $\alpha=.01$ and accept for $\alpha=.05$. Yet either α value could be used, depending on the relative costs of wrong decisions.
(3). \#32, p. 306. Here $n=12, \bar{X}=98.38, s=6.11$. (a). Two-sided test statistic for $H_{0}: \mu=100$ is $|98.38-100| /(6.11 / \sqrt{12})=.918$, which is clearly less than $t_{11, .025}=2.20$, so we accept.
(b). Sample size needed: $(7.5)^{2}(2.33+1.96)^{2} / 5^{2}=41.4$ rounded up to $n=42$.
(4). \#42, p. 311. Binomial hypothesis testing for $H_{0}: p=.5$ versus $p>$.5. (a). Rejection region $\{x: x \geq 15\}$ is the only one of the three that makes sense here. (b). 1-pbinom $(14,20, .5)=.021$ is the significance level of the region in (a). Yes, it is a level .05 test, with α as close to . 05 as it can be without exceeding .05. (c). Here we want the type II error probability for $p=.6, \beta=\operatorname{pbinom}(13,20, .6)=0.75$, very high. With $p=.8$, $\beta=$ pbinom $(13,20, .8)=.087$, not too bad. (d). For level .10, rejection region becomes $\{X: X \geq 13\}$ which has exact significance level .058 , which is aclose as we can get to .10 without exceeding it. So yes, we would reject if 13 out of 20 prefer gut strings.
(5). $\# 52$, p. 317. Because each trial in the experiment provided the taster with 3 choices, there is probability $p_{0}=1 / 3$ if the taster has no real ability to distinguish wines. So that is $H_{0}: p=1 / 3$, which we test against the alternative $H_{A}: p>1 / 3$. The observed value $X \sim \operatorname{Binom}(855, p)$ is
$X=346$, yielding $\hat{p}=346 / 855=.4047$. For this one-sided large-sample test, the standardized test statistic is $(.4047-.333) / \sqrt{(.333)(.667) / 855}=4.449$. Since the p-value is $1-\Phi(4.45)=4.3 \cdot 10^{-6}$, the experiment provides convincing evidence that the tasters' abilities are much better than chance, although we might feel that a skilled taster ought to be able to perform with an even larger probability, sat $p>0.5$.
(6). $\#$ 54, pp. 317-8. (a). For a one-sided test of $H_{0}: p \leq .2$ versus $H_{A}: p>.2$, with $X=15$ occurrences out of $n=60$ trials, the continuitycorrected test statistic is $((15.5-12) / 60) / \sqrt{.2(.8) / 60}=1.13$ leading to P -value $1-\Phi(1.13)=0.13$, and the company should accept the 20% figure. (Continuity correction is optional.)
(b). This is a question about power, figured at $p=.5$.

$$
\begin{aligned}
P_{p=.5}(X>n(.2+z .01 \sqrt{.16 / n} & =P((X-n / 2) / \sqrt{n / 4}>2 \sqrt{n}(-.3+2.33(.4) / \sqrt{n}) \\
& \approx 1-\Phi(-.6 \sqrt{n}+1.86)
\end{aligned}
$$

which for $n=60$ gives a power of .997 .
(7). $\# 2$, p. 334, three ways. (a). Large-sample method: Z test statistic

$$
\left.=|42500-40400| /\left((2200)^{2} / 45+.5(1900)^{2} / 45\right)\right)^{1 / 2}=4.846
$$

rejects because $>z_{.025}=1.96$.
(b). Pooled-variance t-statistic

$$
=|42500-40400| /\left(\left(.5(2200)^{2}+.5(1900)^{2}\right) *(2 / 45)\right)^{1 / 2}=4.846
$$

(algebraically same value!) rejects because $>t_{88,025}=1.987$.
(c). Satterthwaite approximate t-statistic is calculated to have exactly the same value 4.846 as in large-sample method, and should be compared with $t_{\nu, 025}$ where $\nu=\left(2200^{2} / 45+1900^{2} / 45\right)^{2} /\left(\left(2200^{2} / 45\right)^{2} / 44+\left(1900^{2} / 45\right)^{2} / 44\right)=$ 86 (after rounding down). So the percentage point is $t_{86,025}=1.988$, and this approximation makes hardly any difference in this example.
(8). $\# \mathbf{2 8}$, p. 342 Here the sample sizes are small, $m=10$ and $n=5$, so we must assume that the individual data values (lean angles) are normally
distributed, with the same parameters within each sample. The summary statistics are $\bar{x}=30.7, s_{1}=2.75, \bar{y}=16.2, s_{2}=4.438$, and the calculated value of ν is 5 (after rounding down). Here, because we are asked to test H_{0} : $\mu_{1}-\mu_{2} \leq 10$ versus $H_{A}: \mu_{1}-\mu_{2}>10$, we can do an ordinary (Satterthwaite) two-sample t test by reducing \bar{x} by 10, giving the one-sided test statistic $(30.7-16.2-10) / \sqrt{2.75^{2} / 10+4.438^{2} / 5}=2.077$ which would reject at .10 level because it exceeds 1.476. Indeed, its $t_{5} \mathrm{p}$-value is $1-\mathrm{pt}(2.077,5)=.046$. (Note that we use one-sided test, one-sided p-value.)

