
Solutions to HW5, Stat 401 Spring 2011

(1). Extra Problem on web-page (a). This one sided P-value is
1− Φ((24− 22.7)

√
31/8) = 0.183.

(b). For power, take 1− Φ((22.7 + z.058/
√

31− 25)/(8/
√

31)) = .482.

(c) Now we find as p-value: 1 − Ft30((24 − 22.7)
√

31/8) = 0.186. In
calculating the power according to the t30 distribution, we use pt(.,30,

ncp=1.601) in R, finding power = 1 − pt(1.697, 30, ncp = 1.601) = 0.468,
where t30,.05 = 1.697 and the non-centrality parameter was calculated (using
σ2 = 8) as

√
31(25 − 22.7)/8 = 1.601 (or you could have used the power

charts given in the back of the book).

(2). #62, p. 363. Now n1 = 48, n2 = 45, s1 = 21.5, s2 = 19.45.
Again we must assume normally distributed samples to justify the use of the
F test. The test is now two-sided, and the test statistic of (21.5/19.45)2 =
1.222 corresponds to 2-sided P-value 2*(1-pf(1.222,47,39)) = .504, so
we accept the hypothesis of equality. Note that F47,44,.05 = 1.64, so we
certainly accept at level α = .10.

(3). #64, p. 364. Upper 95% confidence bound based on F for two-
sample ratio of variances (triacetate on top, versus cotton on bottom), using
data from example 9.6, is (3.59/0.79)2/F9,9,.95 = (3.59/0.79)2 · qf(.95, 9, 9) =
(3.59/0.79)2(3.179) = 65.65. That is the (really high!) upper bound on the
likely ratio of variances. Since the problem asks for upper bound on ratio of
standard deviations, take square root to get 8.10.

(4). #68, pp. 364-5. These two samples, of respective sizes 24, 11,
yield x̄ = 103.66, sx = 3.738, ȳ = 101.11, sy = 3.603. Here we begin by
forming the two-sided 95% CI for ratio of variances:
(3.738/3.603)2/c(qf(.95,23,10),qf(.05,23,10)) = (0.392, 2.448).
Therefore (since 1 is close to the middle of the interval) it seems reasonable to
do our two-sample t interval using pooled variance, giving 103.66−101.11 ±
sqrt((23∗3.7382+10∗3.6032)/33)∗sqrt(1/24+1/11)∗2.035 = (−0.189, 5.289)
as the CI for µx − µy. This does require normally distributed observations,
iid within samples.

(5). #6, p. 575. This is a multinomial goodness of fit testing problem
with simple null hypothesis p = (9/16, , 3/16, 4/16) and n = 368. Based on
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the given data, we form the chi-square test statistic (195−368∗9/16)2/(368∗
9/16)+(73−368∗3/16)2/(368∗3/16)+(100−368∗4/16)2/(368∗4/16) = 1.623.
We compare this with a χ2

2 d.f.: the p-value (probability that such a r.v.
exceeds 1.623) is .444, so we do not reject at any reasonable significance
level.

(6). #9, pp. 575. Again we have a simple null (only λ = 1 within H0).
(a). First we find 5 equal-probability intervals with endpoints 0, a1, . . . , a4, ∞
by solving the equations

k/5 = F (ak) =
∫ ak

0
e−xdx = 1− e−ak ⇒ a1 = − log(1− k/5)

which implies that the ak values are (0.223, 0.511, 0.916, 1.609).
(b). Next, tally the given observations, counting how many fall in the 5 class
intervals [0, .223], (.223, .511], . . . , (1.609,∞), giving (N1, N2, . . . , N5) =
(6, 8, 10, 7, 8). The corresponding expected count in each interval is 0.2∗40 =
8, so the test statistic value is ((6− 8)2 + (8− 8)2 + (10− 8)2 + (7− 8)2 +
(8− 8)2)/8 = 1.125, which is much smaller than χ2

4 = 9.48.
So we accept H0.

(7). #72, p. 365. Here we take the n = 17 differences Di as our basic
data in a paired analysis of mean difference, obtaining D̄) = −4.176, sD =
35.849. So no, the mean difference is not estimated with great precision.
Relying on the qqplot (not required that you do it yourself for this problem)
we give the mean difference as a (really wide !) 95% confidence interval
− 4.176 ± 35.489 ∗ 2.12/sqrt(17) = (−14.07, 22.42).

(8). #94, p. 179. Here we do three normal probability plots, first for
original data, then square roots, then cube roots:

> Ex4.94 = scan("ex04-94.txt", skip=1)

> qqnorm(Ex4.94) ### not too good, vaguely quadratic rather than linear

> qqnorm(sqrt(Ex4.94)) ### nearly perfect, except for points at end

> qqnorm(Ex4.94^(1/3)) ### this one is even better
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