Solutions to HW6, Stat 401 Spring 2011

(1). Ch. $14 \# 8$. By my reading, category (1) consists of 15 days out of 365 , (2) consists of 47 out of 365 , (3) of 121 out of 365 , and (4) of the remaining 182 out of 365 . Thus the null-hypothesis $\mathbf{p}_{0}=(15 / 365,47 / 365,121 / 365$, $182 / 365$), and the expected counts (obtained by multiplying \mathbf{p}_{0} by 200 , are (8.22, 25.75, 66.30, 99.73) while the observed numbers are (11, 24, 69, 96). The chi-square test statistic (3 degrees of freedom) is $2.78^{2} / 8.22+1.75^{2} / 25.75+$ $2.7^{2} / 66.3+3.73^{2} / 99.73=1.31$, which has P-value 0.73 , and we accept the null hypothesis at all reasonable α levels.
(2). Ch. $\mathbf{4}$ \#92(a). Here we generate plots using the following R statements.

```
> Ex4.92 = scan("ex04-92.txt", skip=1)
> qqnorm(Ex4.92)
### normality very good; line with intercept mean(Ex4.92)
#### and slope sd(Ex4.92) goes through almost all points.
```

(3). Ch. 10 \#2. Here the data are as given in Ex.10.1, with $I=$ $4, J=6$, except that, since all observations in Group 4 have 120 added to them, $\bar{X}_{4}=682.02, S_{4}=39.87$. Using these along with the previously given \bar{X}_{i}, S_{i}, we find: $S S T r=6 * 3 * \operatorname{var}\left(\left\{\bar{X}_{i}\right\}_{i=1}^{4}\right)=18669.2, S S E=$ $4 * 5 * \operatorname{mean}\left(\left\{S_{i}^{2}\right\}\right)=33838.38$. Note that the $M S E=S S E / 20=1691.92$ is the same as given on p. 375 in working with Ex. 10.1. The $F_{3,20}$ statistic for testing H_{0} becomes $(18669.2 / 3) /(33838.4 / 20)=3.678$ which has (onesided) p-value $1-\operatorname{pf}(3.678,3,20)=.029$. So we reject H_{0} at all α levels $>.029$.
(4). Ch. $10 \# 8$. Here $I=5, J=7$, and beginning with
> Ex10.8=array(read.table("ASCII/CH10/ex10-08.TXT", header=T, sep=",")[,1],c(7,5), dimnames=list(1:7,c(4,6,8,10,12))) > Xbar= apply(Ex10.8,2,mean); Ssq = apply(Ex10.8,2,var)
we calculate the entries of the ANOVA table as follows

Source	d.f.	SSQ	MSQ	F
Tr	4	43992.6	10998.2	10.48
Error	30	31475.0	1049.2	$*$
Total	34	75467.6	$*$	$*$

In doing this, it is a good idea to check that the given value of $\sum_{i, j} X_{i j}^{2}$ is equal to the value given. The F-statistic with 4 and 30 degrees of freedom gives 10.48 , which has p-value $2 . e-5$. Thus we certainly reject at $\alpha=.01$.
(5). Ch. $10 \# 12$. With $I=5, J=4$, we are given $M S E=272.9$ and we calculate (using the new value \bar{X}_{3}.) $S S T r=27929.0, M S T r=$ 6982.25. We compare the differences between means with the quantity qtukey $(.95,5,15) * \operatorname{sqrt}(272.9 / 4)=3607$. So the group numbers which are found not significantly different (and would therefore be underscored together) are: $(3,1),(1,4),(2,5)$. All other pairs of groups are found to be significantly different by the Tukey test. Although you were not required to calculate it here, the F statistic (with $4,15 \mathrm{df}$'s) has the very large and significant value of 25.6.
(6). Ch. $10 \# 16$. We are given results here in MINITAB output format. (a). The standard deviations differ here by ratios as much as $44.51 / 20.83=$ 2.14. But based on $I=5, J=7$, we have sample sizes of $J=7$ within each group, and an F-test for equality of variances in any pair of groups would compare the $F_{6,6}$ statistics (which are at most $2.14^{2}=4.57$) with $F_{6,6,05}=4.28$. The p-value for 4.57 is .043 , which is not very extreme considering that it is the most extreme value out of $\binom{5}{2}=10$ comparisons. Note that this too is a multpile-comparisons argument.
(b). The null hypothesis of no difference between means is highly significant becuase of the very small p-value for the $F_{4,30}$-statistic.
(c). The displayed 'critical value' for the Tukey test is $4.10=$ qtukey , $95,5,30$). The displayed intervals are 95% CI's for pairwise differences, and those differences whose CI's do not contain 0 are significant. The only significant differences are those between groups with "level" identifiers 4 vs. $10,4 \mathrm{vs}$. 12, 6 vs. 12 , and 8 vs. 12 . The mean-difference which is sufficiently large to be called 'significant' is $4.10 * \operatorname{sqrt}(1049 / 7)=50.19$.

