Solutions to HW7, Stat 401 Spring 2011

(1). Ch. $10 \#$ 18. Here we have $I=5$ groups, consisting of $J=4$ observations each, with respective group means and sample variances

$$
\begin{gathered}
\left\{\bar{X}_{i .}\right\}_{i=1}^{5}=(12.75,17.75,17.50,11.50,10.00) \\
\left\{S_{i}^{2}\right\}_{i=1}^{5}=(17.583,12.917,4.333,21.667,15.333)
\end{gathered}
$$

(a) Then $S S B=200.3, S S W=215.5, F=3.485$, which has p-value .033 (and in any case the F-statistic is $>F_{4,15,05}=3.056$ and therefore significant.
(b) Putting the pairwise group comparisons $\left(\bar{X}_{i} .-\bar{X}_{k}.\right) \sqrt{J / M S E}$ into a matrix gives

$$
\left(\begin{array}{rrrrr}
0.000 & -2.638 & -2.506 & 0.660 & 1.451 \\
2.638 & 0.000 & 0.132 & 3.298 & 4.089 \\
2.506 & -0.132 & 0.000 & 3.166 & 3.957 \\
-0.660 & -3.298 & -3.166 & 0.000 & 0.791 \\
-1.451 & -4.089 & -3.957 & -0.791 & 0.000
\end{array}\right)
$$

In this setting the upper .95 quantile of the Tukey $(5,15)$ studentized range statistic is 4.367 , so only the pairwise comparisons with larger absolutevalue studentized difference are interpreted as significantly different (although a couple are close, i.e. the group 2 vs. 5 and 3 vs. 5 comparisons). In other words, none of the groups are judged significantly different, even though we saw that the F statistic rejected the hypothesis that the means were all the same!
(2). Ch. $10 \boldsymbol{\# 2 0}$. We consider a setting with $I=3, J=5$, and $\left\{X_{i} .\right\}_{i=3}=(10,15,20)$, so $\operatorname{SSTr}=5 \cdot\left(5^{2}+5^{2}\right)=250$. The SSE's for which the ANOVA F test would reject are those for which $(250 / 2) /(S S E / 12)>$ $F_{2,12,05}=3.885$, i.e. for which $S S E<386.07$. On the other hand, the maximum absolute difference for means beyond which the Tukey method finds at least two means different is $3.773 \sqrt{S S E /(12 * 5)}$. With the means as given, the Tukey method finds groups differences if and only if $10>$ $3.773 \sqrt{S S E /(12 * 5)}$, or $S S E<421.481$. So if SSE lies between 386.07 and 421.481, then ANOVA accepts but Tukey rejects the null hypothesis.
(3). Ch. $12 \# 6$. The scatterplot shows a nearly linearly decreasing trend for the bulk of observations, those with $x<150$. However, there are two observatins with large x values (roughly 178 and 188), which have very different corresponding y-values, and if only these two observations were seen, then we would have concluded that y was sharply increasing with x. If only one of these observations were in the dataset, it would definitely distort the estimated slope; but since both are in the dataset, the fitted slope will be about the same as if they were absent.
(4). Ch. 12 \#12. (a). Here:

$$
\begin{gathered}
S_{x x}=390995-517^{2} / 14=371903, \quad S_{x y}=25825-517 * 346 / 14=13048 \\
S_{y y}=17454-346^{2} / 14=8903
\end{gathered}
$$

Therefore $\hat{b}=S_{x y} / S_{x x}=0.0351$ and $\hat{a}=346 / 14-(517 / 14) * .0351=23.418$. So the fitted equation is: $y=23.418+.0351 * x$.
(b). The prediction at $x=35$ is 24.646, with residual (obtained using $y=21$ from Ex. 12.4) equal to -3.646 .
(c). $S S E=S_{y y}-S_{x y}^{2} / S_{x x}=8445.2$, so $M S E=8445.2 / 12=703.8$, and $\hat{\sigma}=\sqrt{703.8}=26.53$.
(d). Proportion of variation explained by regression is $1-S S E / S S T=$ $1-8445.2 / 8903=0.05$.
(e). We are told to delete the last two observations, $(103,75)$ and $(142,90)$. The new summary quantities are:

$$
S_{x x}=2156.7, \quad S_{x y}=1217.3, \quad S_{y y}=998.9, \quad \bar{x}=22.67, \quad \bar{y}=15.08
$$

The new fitted regression coefficients are $\hat{b}=0.564, \hat{a}=2.290$, and the new $\hat{r}^{2}=1217.3^{2} /(998.9 * 2156.7)=.688$. Thus the deletion of the last two observations makes a huge difference to the model fit !
(5). Ch. $12 \boldsymbol{\# 2 0}$. We use the Minitab output to avoid doing new calculations wherever possible. (a). The least squares estimates are the estimated coefficients, $\hat{a}=.3651, \hat{b}=.9668$. (b). The prediction is $.3651+$ $.9668 * .5=.8485$. (c). $\hat{\sigma}=(M S E)^{1 / 2}=.193$. (d). SST $=1.4533$, of which a percentage $\hat{r}^{2}=S S$.Regr $/ S S T=.717$ is explained by regression.
(6). Ch. $12 \# 34$. (a). Model utility test is the name for the t-test of $b=0$, equivalent to the F-test comparing $t_{11}^{2}=F_{1,11}=27.94$ to $F_{1,11,05}=$ 4.84. The test rejects, with very small p -value $<.0003$.
(7). Ch. 12 \#36. (a) The scatterplot looks reasonably linear for the first 6 observations, but the great distance of the last point from the others makes one doubt the appropriateness of analyzing all 7 data points together. (b) Regression analysis gives $\hat{b}=.000621, \hat{r}=0.9647$, so the proportion of variation attributed to regression is $\hat{r}^{2}=.9307$.
(b). The wording makes it seem that the author wants us to test the hypothesis $H_{0}: b * 900 \geq .6$ versus $H_{A}: b * 900<.6$. The auxiliary calculations are: $S_{x x}=508479.4, \hat{\sigma^{2}}=.00292$. Then the t test statistic for this test rejects for values $t_{5}<-2.015$, but the calculated statistic is $(.000621-.000667) *(508479 / .00292)^{1 / 2}=-.607$. So no the evidence is not substantial that the average increase is $<.6$.
(c). We are asked for a confidence interval about b; the 95% interval is $=.000621 \pm 2.571 *(.00292 / 508479)^{0.5}=(.00601, .00640)$.

