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Chapter 2

Theory of Interest and
Force of Mortality

The parallel development of Interest and Probability Theory topics continues
in this Chapter. For application in Insurance, we are preparing to value
uncertain payment streams in which times of payment may also be uncertain.
The interest theory allows us to express the present values of certain payment
streams compactly, while the probability material prepares us to find and
interpret average or expected values of present values expressed as functions
of random lifetime variables.

This installment of the course covers: (a) further formulas and topics in
the pure (i.e., non-probabilistic) theory of interest, and (b) more discussion
of lifetime random variables, in particular of force of mortality or hazard-
rates, and theoretical families of life distributions.

2.1 More on Theory of Interest

The objective of this subsection is to define notations and to find compact
formulas for present values of some standard payment streams. To this end,
newly defined payment streams are systematically expressed in terms of pre-
viously considered ones. There are two primary methods of manipulating
one payment-stream to give another for the convenient calculation of present
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26 CHAPTER 2. INTEREST & FORCE OF MORTALITY

values:

• First, if one payment-stream can be obtained from a second one pre-
cisely by delaying all payments by the same amount t of time, then
the present value of the first one is vt multiplied by the present value
of the second.

• Second, if one payment-stream can be obtained as the superposition of
two other payment streams, i.e., can be obtained by paying the total
amounts at times indicated by either of the latter two streams, then
the present value of the first stream is the sum of the present values of
the other two.

The following subsection contains several useful applications of these meth-
ods. For another simple illustration, see Worked Example 2 at the end of the
Chapter.

2.1.1 Annuities & Actuarial Notation

The general present value formulas above will now be specialized to the case
of constant (instantaneous) interest rate δ(t) ≡ ln(1 + i) = δ at all times
t ≥ 0, and some very particular streams of payments sj at times tj,
related to periodic premium and annuity payments. The effective interest
rate or APR is always denoted by i, and as before the m-times-per-year
equivalent nominal interest rate is denoted by i(m). Also, from now on the
standard and convenient notation

v ≡ 1/(1 + i) = 1 /

(

1 +
i(m)

m

)m

will be used for the present value of a payment of $1 in one year.

(i) If s0 = 0 and s1 = · · · = snm = 1/m in the discrete setting, where
m denotes the number of payments per year, and tj = j/m, then the
payment-stream is called an immediate annuity, and its present value Gn

is given the notation a
(m)
n⌉ and is equal, by the geometric-series summation

formula, to

m−1

nm
∑

j=1

(

1 +
i(m)

m

)−j

=
1 − (1 + i(m)/m)−nm

m(1 + i(m)/m − 1)
=

1

i(m)

(

1−
(

1+
i(m)

m

)

−nm)
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This calculation has shown

a
(m)
n⌉ =

1 − vn

i(m)
(2.1)

All of these immediate annuity values, for fixed v, n but varying m, are
roughly comparable because all involve a total payment of 1 per year.
Formula (2.1) shows that all of the values a

(m)
n⌉ differ only through the factors

i(m), which differ by only a few percent for varying m and fixed i, as shown
in Table 2.1. Recall from formula (1.4) that i(m) = m{(1 + i)1/m − 1}.

If instead s0 = 1/m but snm = 0, then the notation changes to ä
(m)
n⌉ ,

the payment-stream is called an annuity-due, and the value is given by any
of the equivalent formulas

ä
(m)
n⌉ = (1 +

i(m)

m
) a

(m)
n⌉ =

1 − vn

m
+ a

(m)
n⌉ =

1

m
+ a

(m)

n−1/m⌉
(2.2)

The first of these formulas recognizes the annuity-due payment-stream as
identical to the annuity-immediate payment-stream shifted earlier by the
time 1/m and therefore worth more by the accumulation-factor (1+i)1/m =
1 + i(m)/m. The third expression in (2.2) represents the annuity-due stream
as being equal to the annuity-immediate stream with the payment of 1/m
at t = 0 added and the payment of 1/m at t = n removed. The final
expression says that if the time-0 payment is removed from the annuity-due,
the remaining stream coincides with the annuity-immediate stream consisting
of nm − 1 (instead of nm) payments of 1/m.

In the limit as m → ∞ for fixed n, the notation an⌉ denotes the
present value of an annuity paid instantaneously at constant unit rate, with
the limiting nominal interest-rate which was shown at the end of the previous
chapter to be limm i(m) = i(∞) = δ. The limiting behavior of the nominal
interest rate can be seen rapidly from the formula

i(m) = m
(

(1 + i)1/m − 1
)

= δ · exp(δ/m) − 1

δ/m

since (ez − 1)/z converges to 1 as z → 0. Then by (2.1) and (2.2),

an⌉ = lim
m→∞

ä
(m)
n⌉ = lim

m→∞

a
(m)
n⌉ =

1 − vn

δ
(2.3)
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Table 2.1: Values of nominal interest rates i(m) (upper number) and
d(m) (lower number), for various choices of effective annual interest rate
i and number m of compounding periods per year.

i = .02 .03 .05 .07 .10 .15

m = 2 .0199 .0298 .0494 .0688 .0976 .145

.0197 .0293 .0482 .0665 .0931 .135

3 .0199 .0297 .0492 .0684 .0968 .143

.0197 .0294 .0484 .0669 .0938 .137

4 .0199 .0297 .0491 .0682 .0965 .142

.0198 .0294 .0485 .0671 .0942 .137

6 .0198 .0296 .0490 .0680 .0961 .141

.0198 .0295 .0486 .0673 .0946 .138

12 .0198 .0296 .0489 .0678 .0957 .141

.0198 .0295 .0487 .0675 .0949 .139

A handy formula for annuity-due present values follows easily by recalling
that

1 − d(m)

m
=
(

1 +
i(m)

m

)

−1

implies d(m) =
i(m)

1 + i(m)/m

Then, by (2.2) and (2.1),

ä
(m)
n⌉ = (1 − vn) · 1 + i(m)/m

i(m)
=

1 − vn

d(m)
(2.4)

In case m is 1, the superscript (m) is omitted from all of the annuity
notations. In the limit where n → ∞, the notations become a

(m)
∞⌉ and

ä
(m)
∞⌉ , and the annuities are called perpetuities (respectively immediate and

due) with present-value formulas obtained from (2.1) and (2.4) as:

a
(m)
∞⌉ =

1

i(m)
, ä

(m)
∞⌉ =

1

d(m)
(2.5)

Let us now build some more general annuity-related present values out of
the standard functions a

(m)
n⌉ and ä

(m)
n⌉ .
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(ii). Consider first the case of the increasing perpetual annuity-due,

denoted (I(m)ä)
(m)
∞⌉ , which is defined as the present value of a stream of

payments (k + 1)/m2 at times k/m, for k = 0, 1, . . . forever. Clearly the
present value is

(I(m)ä)
(m)
∞⌉ =

∞
∑

k=0

m−2 (k + 1)
(

1 +
i(m)

m

)

−k

Here are two methods to sum this series, the first purely mathematical, the
second with actuarial intuition. First, without worrying about the strict
justification for differentiating an infinite series term-by-term,

∞
∑

k=0

(k + 1) xk =
d

dx

∞
∑

k=0

xk+1 =
d

dx

x

1 − x
= (1 − x)−2

for 0 < x < 1, where the geometric-series formula has been used to sum
the second expression. Therefore, with x = (1 + i(m)/m)−1 and 1 − x =
(i(m)/m)/(1 + i(m)/m),

(I(m)ä)
(m)
∞⌉ = m−2

( i(m)/m

1 + i(m)/m

)

−2

=

(

1

d(m)

)2

=
(

ä
(m)
∞⌉

)2

and (2.5) has been used in the last step. Another way to reach the same result
is to recognize the increasing perpetual annuity-due as 1/m multiplied by

the superposition of perpetuities-due ä
(m)
∞⌉ paid at times 0, 1/m, 2/m, . . . ,

and therefore its present value must be ä
(m)
∞⌉ · ä(m)

∞⌉ . As an aid in recognizing

this equivalence, consider each annuity-due ä
(m)
∞⌉ paid at a time j/m as

being equivalent to a stream of payments 1/m at time j/m, 1/m at
(j + 1)/m, etc. Putting together all of these payment streams gives a total
of (k+1)/m paid at time k/m, of which 1/m comes from the annuity-due
starting at time 0, 1/m from the annuity-due starting at time 1/m, up
to the payment of 1/m from the annuity-due starting at time k/m.

(iii). The increasing perpetual annuity-immediate (I(m)a)
(m)
∞⌉ —

the same payment stream as in the increasing annuity-due, but deferred by
a time 1/m — is related to the perpetual annuity-due in the obvious way

(I(m)a)
(m)
∞⌉ = v1/m (I(m)ä)

(m)
∞⌉ = (I(m)ä)

(m)
∞⌉

/

(1 + i(m)/m) =
1

i(m) d(m)
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(iv). Now consider the increasing annuity-due of finite duration

n years. This is the present value (I(m)ä)
(m)
n⌉ of the payment-stream of

(k + 1)/m2 at time k/m, for k = 0, . . . , nm− 1. Evidently, this payment-

stream is equivalent to (I(m)ä)
(m)
∞⌉ minus the sum of n multiplied by an

annuity-due ä
(m)
∞⌉ starting at time n together with an increasing annuity-

due (I(m)ä)
(m)
∞⌉ starting at time n. (To see this clearly, equate the payments

0 = (k + 1)/m2 − n · 1
m

− (k − nm + 1)/m2 received at times k/m for
k ≥ nm.) Thus

(I(m)ä)
(m)
n⌉ = (I(m)ä)

(m)
∞⌉

(

1 − (1 + i(m)/m)−nm
)

− nä
(m)
∞⌉ (1 + i(m)/m)−nm

= ä
(m)
∞⌉

(

ä
(m)
∞⌉ − (1 + i(m)/m)−nm

[

ä
(m)
∞⌉ + n

] )

= ä
(m)
∞⌉

(

ä
(m)
n⌉ − n vn

)

where in the last line recall that v = (1 + i)−1 = (1 + i(m)/m)−m and

that ä
(m)
n⌉ = ä

(m)
∞⌉ (1 − vn). The latter identity is easy to justify either

by the formulas (2.4) and (2.5) or by regarding the annuity-due payment
stream as a superposition of the payment-stream up to time n − 1/m and
the payment-stream starting at time n. As an exercise, fill in details of a
second, intuitive verification, analogous to the second verification in pargraph
(ii) above.

(v). The decreasing annuity (D(m) ä)
(m)
n⌉ is defined as (the present

value of) a stream of payments starting with n/m at time 0 and decreasing
by 1/m2 every time-period of 1/m, with no further payments at or after
time n. The easiest way to obtain the present value is through the identity

(I(m)ä)
(m)
n⌉ + (D(m)ä)

(m)
n⌉ = (n +

1

m
) ä

(m)
n⌉

Again, as usual, the method of proving this is to observe that in the payment-
stream whose present value is given on the left-hand side, the payment
amount at each of the times j/m, for j = 0, 1, . . . , nm − 1, is

j + 1

m2
+ (

n

m
− j

m2
) =

1

m
(n +

1

m
)
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2.1.2 Loan Amortization & Mortgage Refinancing

The only remaining theory-of-interest topic to cover in this unit is the break-
down between principal and interest payments in repaying a loan such as a
mortgage. Recall that the present value of a payment stream of amount c
per year, with c/m paid at times 1/m, 2/m, . . . , n− 1/m, n/m, is c a

(m)
n⌉ .

Thus, if an amount Loan-Amt has been borrowed for a term of n years,
to be repaid by equal installments at the end of every period 1/m , at fixed
nominal interest rate i(m), then the installment amount is

Mortgage Payment =
Loan-Amt

m a
(m)
n⌉

= Loan-Amt
i(m)

m (1 − vn)

where v = 1/(1 + i) = (1 + i(m)/m)−m. Of the payment made at time (k +
1)/m, how much can be attributed to interest and how much to principal ?
Consider the present value at 0 of the debt per unit of Loan-Amt less
accumulated amounts paid up to and including time k/m :

1 − m a
(m)

k/m⌉

1

m a
(m)
n⌉

= 1 − 1 − vk/m

1 − vn
=

vk/m − vn

1 − vn

The remaining debt, per unit of Loan-Amt, valued just after time k/m,
is denoted from now on by Bn, k/m. It is greater than the displayed present
value at 0 by a factor (1 + i)k/m, so is equal to

Bn, k/m = (1 + i)k/m vk/m − vn

1 − vn
=

1 − vn−k/m

1 − vn
(2.6)

The amount of interest for a Loan Amount of 1 after time 1/m is (1 +
i)1/m − 1 = i(m)/m. Therefore the interest included in the payment at
(k + 1)/m is i(m)/m multiplied by the value Bn, k/m of outstanding debt
just after k/m. Thus the next total payment of i(m)/(m(1− vn)) consists
of the two parts

Amount of interest = m−1 i(m) (1 − vn−k/m)/(1 − vn)

Amount of principal = m−1i(m)vn−k/m/(1 − vn)

By definition, the principal included in each payment is the amount of the
payment minus the interest included in it. These formulas show in particular
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that the amount of principal repaid in each successive payment increases
geometrically in the payment number, which at first seems surprising. Note
as a check on the displayed formulas that the outstanding balance Bn,(k+1)/m

immediately after time (k + 1)/m is re-computed as Bn, k/m minus the
interest paid at (k + 1)/m, or

1 − vn−k/m

1 − vn
− i(m)

m

vn−k/m

1 − vn
=

1 − vn−k/m(1 + i(m)/m)

1 − vn

=
1 − vn−(k+1)/m

1 − vn
=

(

1 −
a

(m)

(k+1)/m⌉

a
(m)
n⌉

)

v−(k+1)/m (2.7)

as was derived above by considering the accumulated value of amounts paid.
The general definition of the principal repaid in each payment is the excess
of the payment over the interest since the past payment on the total balance
due immediately following that previous payment.

2.1.3 Illustration on Mortgage Refinancing

Suppose that a 30–year, nominal-rate 8%, $100, 000 mortgage payable
monthly is to be refinanced at the end of 8 years for an additional 15 years
(instead of the 22 which would otherwise have been remaining to pay it
off) at 6%, with a refinancing closing-cost amount of $1500 and 2 points.
(The points are each 1% of the refinanced balance including closing costs,
and costs plus points are then extra amounts added to the initial balance
of the refinanced mortgage.) Suppose that the new pattern of payments is
to be valued at each of the nominal interest rates 6%, 7%, or 8%, due
to uncertainty about what the interest rate will be in the future, and that
these valuations will be taken into account in deciding whether to take out
the new loan.

The monthly payment amount of the initial loan in this example was
$100, 000(.08/12)/(1− (1+ .08/12)−360) = $733.76, and the present value as
of time 0 (the beginning of the old loan) of the payments made through the

end of the 8th year is ($733.76) · (12a
(12)
8⌉

) = $51, 904.69. Thus the present
value, as of the end of 8 years, of the payments still to be made under the
old mortgage, is $(100, 000− 51, 904.69)(1 + .08/12)96 = $91, 018.31. Thus,
if the loan were to be refinanced, the new refinanced loan amount would be
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$91, 018.31 + 1, 500.00 = $92, 518.31. If 2 points must be paid in order to
lock in the rate of 6% for the refinanced 15-year loan, then this amount
is (.02)92518.31 = $1850.37 . The new principal balance of the refinanced
loan is 92518.31 + 1850.37 = $94, 368.68, and this is the present value at a
nominal rate of 6% of the future loan payments, no matter what the term of
the refinanced loan is. The new monthly payment (for a 15-year duration) of
the refinanced loan is $94, 368.68(.06/12)/(1 − (1 + .06/12)−180) = $796.34.

For purposes of comparison, what is the present value at the current
going rate of 6% (nominal) of the continuing stream of payments under
the old loan ? That is a 22-year stream of monthly payments of $733.76,
as calculated above, so the present value at 6% is $733.76 · (12a

(12)
22⌉

) =
$107, 420.21. Thus, if the new rate of 6% were really to be the correct
one for the next 22 years, and each loan would be paid to the end of its
term, then it would be a financial disaster not to refinance. Next, suppose
instead that right after re-financing, the economic rate of interest would be
a nominal 7% for the next 22 years. In that case both streams of payments
would have to be re-valued — the one before refinancing, continuing another
22 years into the future, and the one after refinancing, continuing 15 years

into the future. The respective present values (as of the end of the 8th

year) at nominal rate of 7% of these two streams are:

Old loan: 733.76 (12a
(12)
22⌉

) = $98, 700.06

New loan: 796.34 (12a
(12)
15⌉

) = $88, 597.57

Even with these different assumptions, and despite closing-costs and points,
it is well worth re-financing.

Exercise: Suppose that you can forecast that you will in fact sell your
house in precisely 5 more years after the time when you are re-financing. At
the time of sale, you would pay off the cash principal balance, whatever it
is. Calculate and compare the present values (at each of 6%, 7%, and 8%
nominal interest rates) of your payment streams to the bank, (a) if you
continue the old loan without refinancing, and (b) if you re-finance to get
a 15-year 6% loan including closing costs and points, as described above.
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2.1.4 Computational illustration in Splus or R

All of the calculations described above are very easy to program in any lan-
guage from Fortran to Mathematica, and also on a programmable calculator;
but they are also very handily organized within a spreadsheet, which seems
to be the way that MBA’s, bank-officials, and actuaries will learn to do them
from now on.

In this section, an Splus or R function (cf. Venables & Ripley 2002)
is provided to do some comparative refinancing calculations. Concerning
the syntax of Splus or R, the only explanation necessary at this point is
that the symbol <− denotes assignment of an expression to a variable:
A <−B means that the variable A is assigned the value of expression B.
Other syntactic elements used here are common to many other computer
languages: * denotes multiplication, and ∧ denotes exponentiation.

The function RefExmp given below calculates mortgage payments, bal-
ances for purposes of refinancing both before and after application of ad-
ministrative costs and points, and the present value under any interest rate
(not necessarily the ones at which either the original or refinanced loans are
taken out) of the stream of repayments to the bank up to and including the
lump-sum payoff which would be made, for example, at the time of selling
the house on which the mortgage loan was negotiated. The output of the
function is a list which, in each numerical example below, is displayed in
‘unlisted’ form, horizontally as a vector. Lines beginning with the symbol #
are comment-lines.

The outputs of the function are as follows. Oldpayment is the monthly
payment on the original loan of face-amount Loan at nominal interest i(12) =
OldInt for a term of OldTerm years. NewBal is the balance Bn, k/m of
formula (2.6) for n = OldTerm, m = 12, and k/m = RefTim, and the
refinanced loan amount is a multiple 1+ Points of NewBal, which is equal
to RefBal + Costs. The new loan, at nominal interest rate NewInt, has
monthly payments Newpaymt for a term of NewTerm years. The loan is to
be paid off PayoffTim years after RefTim when the new loan commences,
and the final output of the function is the present value at the start of the
refinanced loan with nominal interest rate ValInt of the stream of payments
made under the refinanced loan up to and including the lump sum payoff.
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Splus or R FUNCTION CALCULATING REFINANCE PAYMENTS & VALUES

RefExmp

function(Loan, OldTerm, RefTim, NewTerm, Costs, Points,

PayoffTim, OldInt, NewInt, ValInt)

{

# Function calculates present value of future payment stream

# underrefinanced loan.

# Loan = original loan amount;

# OldTerm = term of initial loan in years;

# RefTim = time in years after which to refinance;

# NewTerm = term of refinanced loan;

# Costs = fixed closing costs for refinancing;

# Points = fraction of new balance as additional costs;

# PayoffTim (no bigger than NewTerm) = time (from refinancing-

# time at which new loan balance is to be paid off in

# cash (eg at house sale);

# The three interest rates OldInt, NewInt, ValInt are

# nominal 12-times-per-year, and monthly payments

# are calculated.

vold <- (1 + OldInt/12)^(-12)

Oldpaymt <- ((Loan * OldInt)/12)/(1 - vold^OldTerm)

NewBal <- (Loan * (1 - vold^(OldTerm - RefTim)))/

(1 - vold^OldTerm)

RefBal <- (NewBal + Costs) * (1 + Points)

vnew <- (1 + NewInt/12)^(-12)

Newpaymt <- ((RefBal * NewInt)/12)/(1 - vnew^NewTerm)

vval <- (1 + ValInt/12)^(-12)

Value <- (Newpaymt * 12 * (1 - vval^PayoffTim))/ValInt +

(RefBal * vval^PayoffTim * (1 - vnew^(NewTerm -

PayoffTim)))/(1 - vnew^NewTerm)

list(Oldpaymt = Oldpaymt, NewBal = NewBal,

RefBal = RefBal, Newpaymt = Newpaymt, Value = Value)

}
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We begin our illustration by reproducing the quantities calculated in the
previous subsection:

> unlist(RefExmp(100000, 30, 8, 15, 1500, 0.02, 15,

0.08, 0.06, 0.06))

Oldpaymt NewBal RefBal Newpaymt Value

733.76 91018 94368 796.33 94368

Note that, since the payments under the new (refinanced) loan are here
valued at the same interest rate as the loan itself, the present value Value of
all payments made under the loan must be equal to the the refinanced loan
amount RefBal.

The comparisons of the previous Section between the original and refi-
nanced loans, at (nominal) interest rates of 6, 7, and 8 %, are all recapitulated
easily using this function. To use it, for example, in valuing the old loan at
7%, the arguments must reflect a ‘refinance’ with no costs or points for a
period of 22 years at nominal rate 6%, as follows:

> unlist(RefExmp(100000,30,8,22,0,0,22,0.08,0.08,0.07))

Oldpaymt NewBal RefBal Newpaymt Value

733.76 91018 91018 733.76 98701

(The small discrepancies between the values found here and in the previous
subsection are due to the rounding used there to express payment amounts
to the nearest cent.)

We consider next a numerical example showing break-even point for refi-
nancing by balancing costs versus time needed to amortize them.

Suppose that you have a 30-year mortage for $100,000 at nominal 9% ( =
i(12)), with level monthly payments, and that after 7 years of payments you
refinance to obtain a new 30-year mortgage at 7% nominal interest ( = i(m)

for m = 12), with closing costs of $1500 and 4 points (i.e., 4% of the total
refinanced amount including closing costs added to the initial balance), also
with level monthly payments. Figuring present values using the new interest
rate of 7%, what is the time K (to the nearest month) such that if both
loans — the old and the new — were to be paid off in exactly K years after
the time (the 7-year mark for the first loan) when you would have refinanced,
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then the remaining payment-streams for both loans from the time when you
refinance are equivalent (i.e., have the same present value from that time) ?

We first calculate the present value of payments under the new loan.
As remarked above in the previous example, since the same interest rate is
being used to value the payments as is used in figuring the refinanced loan,
the valuation of the new loan does not depend upon the time K to payoff.
(It is figured here as though the payoff time K were 10 years.)

> unlist(RefExmp(1.e5, 30,7,30, 1500,.04, 10, 0.09,0.07,0.07))

Oldpaymt NewBal RefBal Newpaymt Value

804.62 93640 98946 658.29 98946

Next we compute the value of payments under the old loan, at 7% nominal
rate, also at payoff time K = 10. For comparison, the value under the
old loan for payoff time 0 (i.e., for cash payoff at the time when refinancing
would have occurred) coincides with the New Balance amount of $93640.

> unlist(RefExmp(1.e5, 30,7,23, 0,0, 10, 0.09,0.09,0.07))

Oldpaymt NewBal RefBal Newpaymt Value

804.62 93640 93640 804.62 106042

The values found in the same way when the payoff time K is successively
replaced by 4, 3, 3.167, 3.25 are 99979, 98946, 98593, 98951. Thus, the
payoff-time K at which there is essentially no difference in present value
at nominal 7% between the old loan or the refinanced loan with costs and
points (which was found to have Value 98946), is 3 years and 3 months
after refinancing.

2.1.5 Coupon & Zero-coupon Bonds

In finance, an investor assessing the present value of a bond is in the same
situation as the bank receiving periodic level payments in repayment of a
loan. If the payments are made every 1/m year, with nominal coupon
interest rate i(m), for a bond with face value $1000, then the payments
are precisely the interest on $1000 for 1/m year, or 1000 · i(m)/m.
For most corporate or government bonds, m = 4, although some bonds
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have m = 2. If the bond is uncallable, which is assumed throughout this
discussion, then it entitles the holder to receive the stream of such payments
every 1/m year until a fixed final redemption date, at which the final interest
payment coincides with the repayment of the principal of $1000. Suppose
that the time remaining on a bond until redemption is R (assumed to be
a whole-number multiple of 1/m years), and that the nominal annualized
m-period-per-year interest rate, taking into account the credit-worthiness of
the bond issuer together with current economic conditions, is r(m) which
will typically not be equal to i(m). Then the current price P of the bond
is

P = 1000 i(m) a
(m)
R⌉ , r(m)

+ 1000 (1 +
r(m)

m
)−Rm

In this equation, the value P represents cash on hand. The first term on
the right-hand side is the present value at nominal interest rate r(m) of the
payments of i(m) 1000/m every 1/m year, which amount to 1000i(m)

every year for R years. The final repayment of principal in R years
contributes the second term on the right-hand side to the present value. As
an application of this formula, it is easy to check that a 10-year $1000 bond
with nominal annualized quarterly interest rate i(4) = 0.06 would be priced
at $863.22 if the going nominal rate of interest were r(4) = 0.08.

A slightly different valuation problem is presented by the zero-coupon
bond, a financial instrument which pays all principal and interest, at a de-
clared interest rate i = iAPR, at the end of a term of n years, but pays
nothing before that time. When first issued, a zero-coupon bond yielding
iAPR which will pay $1000 at the end of n years is priced at its present
value

Πn = 1000 · (1 + i)−n (2.8)

(Transaction costs are generally figured into the price before calculating the
yield i.) At a time, n−R years later, when the zero-coupon bond has R
years left to run and the appropriate interest rate for valuation has changed
to r = rAPR, the correct price of the bond is the present value of a payment
of 1000 R years in the future, or 1000(1 + r)−R.

For tax purposes, at least in the US, an investor is required (either by the
federal or state government, depending on the issuer of the bond) to declare
the amount of interest income received or deemed to have been received from
the bond in a specific calendar year. For an ordinary or coupon bond, the
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year’s income is just the total i(m) · 1000 actually received during the year.
For a zero-coupon bond assumed to have been acquired when first issued,
at price Πn, if the interest rate has remained constant at i = iAPR since
the time of acquisition, then the interest income deemed to be received in
the year, also called the Original Issue Discount (OID), would simply be
the year’s interest Πn i(m) on the initial effective face amount Πn of the
bond. That is because all accumulated value of the bond would be attributed
to OID interest income received year by year, with the principal remaining
the same at Πn. Assume next that the actual year-by-year APR interest
rate is r(j) throughout the year [j, j + 1), for j = 0, 1, . . . n − 1, with
r(0) equal to i. Then, again because accumulated value over the initial
price is deemed to have been received in the form of yearly interest, the OID
should be Πn r(j) in the year [j, j + 1). The problematic aspect of this
calculation is that, when interest rates have fluctuated a lot over the times
j = 0, 1, . . . , n − R − 1, the zero-coupon bond investor will be deemed to
have received income Πn r(j) in successive years j = 0, 1, . . . , n − R − 1,
corresponding to a total accumulated value of

Πn (1 + r(0)) (1 + r(1)) · · · (1 + r(n − R − 1))

while the price 1000 (1 + r(n − R))−R for which the bond could be sold
may be very different. The discrepancy between the ‘deemed received’ accu-
mulated value and the final actual value when the bond is redeemed or sold
must presumably be treated as a capital gain or loss. However, the present
author makes no claim to have presented this topic according to the views
of the Internal Revenue Service, since he has never been able to figure out
authoritatively what those views are.

2.2 Force of Mortality & Analytical Models

Up to now, the function S(x) called the “survivor” or “survival” function
has been defined to be equal to the life-table ratio lx/l0 at all integer ages
x, and to be piecewise continuously differentiable for all positive real values
of x. Intuitively, for all positive real x and t, S(x) − S(x + t) is the
fraction of the initial life-table cohort which dies between ages x and x+ t,
and (S(x)− S(x + t))/S(x) represents the fraction of those alive at age x
who fail before x + t. An equivalent representation is S(x) =

∫

∞

x
f(t) dt ,
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where f(t) ≡ −S ′(t) is called the failure density. If T denotes the random
variable which is the age at death for a newly born individual governed by
the same causes of failure as the life-table cohort, then P (T ≥ x) = S(x),
and according to the Fundamental Theorem of Calculus,

lim
ǫ→0+

P (x ≤ T ≤ x + ǫ)

ǫ
= lim

ǫ→0+

∫ x+ǫ

x

f(u) du = f(x)

as long as the failure density is a continuous function.

Two further useful actuarial notations, often used to specify the theoret-
ical lifetime distribution, are:

tpx = P (T ≥ x + t |T ≥ x ) = S(x + t)/S(x)

and

tqx = 1 − tpx = P (T ≤ x + t |T ≥ x ) = (S(x) − S(x + t))/S(x)

The quantity tqx is referred to as the age-specific death rate for periods
of length t. In the most usual case where t = 1 and x is an integer
age, the notation 1qx is replaced by qx, and 1px is replaced by px. The
rate qx would be estimated from the cohort life table as the ratio dx/lx of
those who die between ages x and x+1 as a fraction of those who reached
age x. The way in which this quantity varies with x is one of the most
important topics of study in actuarial science. For example, one important
way in which numerical analysis enters actuarial science is that one wishes
to interpolate the values qx smoothly as a function of x. The topic called
“Graduation Theory” among actuaries is the mathematical methodology of
Interpolation and Spline-smoothing applied to the raw function qx = dx/lx.

To give some idea what a realistic set of death-rates looks like, Figure 2.1
pictures the age-specific 1-year death-rates qx for the simulated life-table
given as Table 1.1 on page 3. Additional granularity in the death-rates can
be seen in Figure 2.2, where the logarithms of death-rates are plotted. After
a very high death-rate during the first year of life (26.3 deaths per thousand
live births), there is a rough year-by-year decline in death-rates from 1.45
per thousand in the second year to 0.34 per thousand in the eleventh year.
(But there were small increases in rate from ages 4 to 7 and from 8 to
9, which are likely due to statistical irregularity rather than real increases
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in risk.) Between ages 11 and 40, there is an erratic but roughly linear
increase of death-rates per thousand from 0.4 to 3.0. However, at ages
beyond 40 there is a rapid increase in death-rates as a function of age.
As can be seen from Figure 2.2, the values qx seem to increase roughly
as a power cx where c ∈ [1.08, 1.10]. (Compare this behavior with the
Gompertz-Makeham Example (v) below.) This exponential behavior of the
age-specific death-rate for large ages suggests that the death-rates pictured
could reasonably be extrapolated to older ages using the formula

qx ≈ q78 · (1.0885)x−78 , x ≥ 79 (2.9)

where the number 1.0885 was found as log(q78/q39)/(78 − 39).

Now consider the behavior of ǫqx as ǫ gets small. It is clear that ǫqx

must also get small, roughly proportionately to ǫ, since the probability of
dying between ages x and x + ǫ is approximately ǫ f(x) when ǫ gets
small.

Definition: The limiting death-rate ǫqx/ǫ per unit time as ǫ ց 0 is
called by actuaries the force of mortality µ(x). In reliability theory or
biostatistics, the same function is called the failure intensity, failure rate, or
hazard intensity.

The reasoning above shows that for small ǫ,

ǫqx

ǫ
=

1

ǫS(x)

∫ x+ǫ

x

f(u) du −→ f(x)

S(x)
, ǫ ց 0

Thus

µ(x) =
f(x)

S(x)
=

−S ′(x)

S(x)
= − d

dx
ln(S(x))

where the chain rule for differentiation was used in the last step. Replacing
x by y and integrating both sides of the last equation between 0 and x,
we find

∫ x

0

µ(y) dy =
(

− ln(S(y))
)x

0
= − ln(S(x))

since S(0) = 1. Similarly,

∫ x+t

x

µ(y) dy = ln S(x) − ln S(x + t)
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Figure 2.1: Plot of age-specific death-rates qx versus x, for the simulated
illustrative life table given in Table 1.1, page 3.
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Figure 2.2: Plot of logarithm log(qx) of age-specific death-rates as a function
of age x, for the simulated illustrative life table given in Table 1.1, page 3.
The rates whose logarithms are plotted here are the same ones shown in
Figure 2.1.
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Now exponentiate to obtain the useful formulas

S(x) = exp
{

−
∫ x

0

µ(y) dy
}

, tpx =
S(x + t)

S(x)
= exp

{

−
∫ x+t

x

µ(y) dy
}

Examples:

(i) If S(x) = (ω−x)/ω for 0 ≤ x ≤ ω (the uniform failure distribution
on [0, ω] ), then µ(x) = (ω−x)−1. Note that this hazard function increases
to ∞ as x increases to ω.

(ii) If S(x) = e−µx for x ≥ 0 (the exponential failure distribution on
[0,∞) ), then µ(x) = µ is constant.

(iii) If S(x) = exp(−λxγ) for x ≥ 0, then mortality follows the Weibull
life distribution model with shape parameter γ > 0 and scale parameter λ.
The force of mortality takes the form

µ(x) = λ γ xγ−1

This model is very popular in engineering reliability. It has the flexibility
that by choice of the shape parameter γ one can have

(a) failure rate increasing as a function of x ( γ > 1 ),

(b) constant failure rate ( γ = 1, the exponential model again),
or

(c) decreasing failure rate ( 0 < γ < 1 ).

But what one cannot have, in the examples considered so far, is a force-of-
mortality function which decreases on part of the time-axis and increases
elsewhere.

(iv) Two other models for positive random variables which are popular
in various statistical applications are the Gamma, with

S(x) =

∫

∞

x

βα yα−1 e−βy dy /

∫

∞

0

zα−1 e−z dz , α, β > 0

and the Lognormal, with

S(x) = 1 − Φ
( ln x − m

σ

)

, m real, σ > 0
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where

Φ(z) ≡ 1

2
+

∫ z

0

e−u2/2 du√
2π

is called the standard normal distribution function. In the Gamma case,
the expected lifetime is α/β, while in the Lognormal, the expectation is
exp(µ + σ2/2). Neither of these last two examples has a convenient or
interpretable force-of-mortality function.

Increasing force of mortality intuitively corresponds to aging, where the
causes of death operate with greater intensity or effect at greater ages. Con-
stant force of mortality, which is easily seen from the formula S(x) =
exp(−

∫ x

0
µ(y) dy) to be equivalent to exponential failure distribution, would

occur if mortality arose only from pure accidents unrelated to age. Decreas-
ing force of mortality, which really does occur in certain situations, reflects
what engineers call “burn-in”, where after a period of initial failures due to
loose connections and factory defects the nondefective devices emerge and
exhibit high reliability for a while. The decreasing force of mortality reflects
the fact that the devices known to have functioned properly for a short while
are known to be correctly assembled and are therefore highly likely to have a
standard length of operating lifetime. In human life tables, infant mortality
corresponds to burn-in: risks of death for babies decrease markedly after the
one-year period within which the most severe congenital defects and diseases
of infancy manifest themselves. Of course, human life tables also exhibit an
aging effect at high ages, since the high-mortality diseases like heart disease
and cancer strike with greatest effect at higher ages. Between infancy and
late middle age, at least in western countries, hazard rates are relatively flat.
This pattern of initial decrease, flat middle, and final increase of the force-
of-mortality, seen clearly in Figure 2.1, is called a bathtub shape and requires
new survival models.

As shown above, the failure models in common statistical and reliability
usage either have increasing force of mortality functions or decreasing force of
mortality, but not both. Actuaries have developed an analytical model which
is somewhat more realistic than the preceding examples for human mortalty
at ages beyond childhood. While the standard form of this model does not
accommodate a bathtub shape for death-rates, a simple modification of it
does.
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Example (v). (Gompertz-Makeham forms of the force of mortality). Sup-
pose that µ(x) is defined directly to have the form A + B cx. (The Bcx

term was proposed by Gompertz, the additive constant A by Makeham.
Thus the Gompertz force-of-mortality model is the special case with A = 0,
or µ(x) = Bcx.) By choice of the parameter c as being respectively
greater than or less than 1, one can arrange that the force-of-mortality
curve either be increasing or decreasing. Roughly realistic values of c for
human mortality will be only slightly greater than 1: if the Gompertz
(non-constant) term in force-of-mortality were for example to quintuple in
20 years, then c ≈ 51/20 = 1.084, which may be a reasonable value except
for very advanced ages. (Compare the comments made in connection with
Figures 2.1 and 2.2: for middle and higher ages in the simulated illustrative
life table of Table 1.1, which corresponds roughly to US male mortality of
around 1960, the figure of c was found to be roughly 1.09.) Note that in
any case the Gompertz-Makeham force of mortality is strictly convex (i.e.,
has strictly positive second derivative) when B > 0 and c 6= 1. The
Gompertz-Makeham family could be enriched still further, with further ben-
efits of realism, by adding a linear term Dx. If D < −B ln(c), with
0 < A < B, c > 1, then it is easy to check that

µ(x) = A + B cx + Dx

has a bathtub shape, initially decreasing and later increasing.

Figures 2.3 and 2.4 display the shapes of force-of-mortality functions (iii)-
(v) for various parameter combinations chosen in such a way that the ex-
pected lifetime is 75 years. This restriction has the effect of reducing the
number of free parameters in each family of examples by 1. One can
see from these pictures that the Gamma and Weibull families contain many
very similar shapes for force-of-mortality curves, but that the lognormal and
Makeham families are quite different.

Figure 2.5 shows survival curves from several analytical models plotted on
the same axes as the 1959 US male life-table data from which Table 1.1 was
simulated. The previous discussion about bathtub-shaped force of mortality
functions should have made it clear that none of the analytical models pre-
sented could give a good fit at all ages, but the Figure indicates the rather
good fit which can be achieved to realistic life-table data at ages 40 and
above. The models fitted all assumed that S(40) = 0.925 and that for lives
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aged 40, T − 40 followed the indicated analytical form. Parameters for all
models were determined from the requirements of median age 72 at death
(equal by definition to the value tm for which S(tm) = 0.5) and probability
0.04 of surviving to age 90. Thus, all four plotted survival curves have been
designed to pass through the three points (40, 0.925), (72, 0.5), (90, 0.04).
Of the four fitted curves, clearly the Gompertz agrees most closely with the
plotted points for 1959 US male mortality. The Gompertz curve has param-
eters B = 0.00346, c = 1.0918, the latter of which is close to the value
1.0885 used in formula (2.9) to extrapolate the 1959 life-table death-rates
to older ages.

2.2.1 Comparison of Forces of Mortality

What does it mean to say that one lifetime, with associated survival function
S1(t), has hazard (i.e. force of mortality) µ1(t) which is a constant multiple
κ at all ages of the force of mortality µ2(t) for a second lifetime with
survival function S2(t) ? It means that the cumulative hazard functions are
proportional, i.e.,

− ln S1(t) =

∫ t

0

µ1(x)dx =

∫ t

0

κ µ2(x)dx = κ(− ln S2(t))

and therefore that

S1(t) = (S2(t))
κ , all t ≥ 0

This remark is of especial interest in biostatistics and epidemiology when
the factor κ is allowed to depend (e.g., by a regression model ln(κ) = β ·Z )
on other measured variables (covariates) Z. This model is called the (Cox)
Proportional-Hazards model and is treated at length in books on survival data
analysis (Cox and Oakes 1984, Kalbfleisch and Prentice 1980) or biostatistics
(Lee 1980).

Example. Consider a setting in which there are four subpopulations of the
general population, categorized by the four combinations of values of two
binary covariates Z1, Z2 = 0, 1. Suppose that these four combinations have
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Figure 2.3: Force of Mortality Functions for Weibull and Gamma Probability
Densities. In each case, the parameters are fixed in such a way that the
expected survival time is 75 years.
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Lognormal(mu,sigma^2)
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Figure 2.4: Force of Mortality Functions for Lognormal and Makeham Den-
sities. In each case, the parameters are fixed in such a way that the expected
survival time is 75 years.
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Plots of Theoretical Survival Curves
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Figure 2.5: Theoretical survival curves, for ages 40 and above, plotted as
lines for comparison with 1959 US male life-table survival probabilities plot-
ted as points. The four analytical survival curves — Lognormal, Weibull,
Gamma, and Gompertz — are taken as models for age-at-death minus 40,
so if Stheor(t) denotes the theoretical survival curve with indicated parame-
ters, the plotted curve is (t, 0.925 · Stheor(t − 40)). The parameters of each
analytical model were determined so that the plotted probabilities would be
0.925, 0.5, 0.04 respectively at t = 40, 72, 90.
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respective conditional probabilities for lives aged x (or relative frequencies in
the general population aged x)

Px(Z1 = Z2 = 0) = 0.15 , Px(Z1 = 0, Z2 = 1) = 0.2

Px(Z1 = 1, Z2 = 0) = 0.3 , Px(Z1 = Z2 = 1) = 0.35

and that for a life aged x and all t > 0,

P (T ≥ x + t |T ≥ x, Z1 = z1, Z2 = z2) = exp(−2.5 e0.7z1−.8z2 t2/20000)

It can be seen from the conditional survival function just displayed that the
forces of mortality at ages greater than x are

µ(x + t) = (2.5 e0.7z1−.8z2) t/10000

so that the force of mortality at all ages is multiplied by e0.7 = 2.0138 for
individuals with Z1 = 1 versus those with Z1 = 0, and is multiplied by
e−0.8 = 0.4493 for those with Z2 = 1 versus those with Z2 = 0. The effect
on age-specific death-rates is approximately the same. Direct calculation
shows for example that the ratio of age-specific death rate at age x+20 for
individuals in the group with (Z1 = 1, Z2 = 0) versus those in the group with
(Z1 = 0, Z2 = 0) is not precisely e0.7 = 2.014, but rather

1 − exp(−2.5e0.7((212 − 202)/20000)

1 − exp(−2.5((212 − 202)/20000)
= 2.0085

Various calculations, related to the fractions of the surviving population at
various ages in each of the four population subgroups, can be performed
easily . For example, to find

P (Z1 = 0, Z2 = 1 |T ≥ x + 30)

we proceed in several steps (which correspond to an application of Bayes’
rule, viz. Hogg and Tanis 1997, sec. 2.5, or Larson 1982, Sec. 2.6):

P (T ≥ x+30, Z1 = 0 Z2 = 1|T ≥ x) = 0.2 exp(−2.5e−0.8 302

20000
) = 0.1901

and similarly

P (T ≥ x + 30 |T ≥ x) = 0.15 exp(−2.5(302/20000)) + 0.1901 +
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+ 0.3 exp(−2.5 ∗ e0.7 302

20000
) + 0.35 exp(−2.5e0.7−0.8 302

20000
) = 0.8795

Thus, by definition of conditional probabilities (restricted to the cohort of
lives aged x), taking ratios of the last two displayed quantities yields

P (Z1 = 0, Z2 = 1 |T ≥ x + 30) =
0.1901

0.8795
= 0.2162

2.

In biostatistics and epidemiology, the measured variables Z = (Z1, . . . , Zp)
recorded for each individual in a survival study might be: indicator of a spe-
cific disease or diagnostic condition (e.g., diabetes, high blood pressure, spe-
cific electrocardiogram anomaly), quantitative measurement of a risk-factor
(dietary cholesterol, percent caloric intake from fat, relative weight-to-height
index, or exposure to a toxic chemical), or indicator of type of treatment or
intervention. In these fields, the objective of such detailed models of covari-
ate effects on survival can be: to correct for incidental individual differences
in assessing the effectiveness of a treatment; to create a prognostic index for
use in diagnosis and choice of treatment; or to ascertain the possible risks and
benefits for health and survival from various sorts of life-style interventions.
The multiplicative effects of various risk-factors on age-specific death rates
are often highlighted in the news media.

In an insurance setting, categorical variables for risky life-styles, occupa-
tions, or exposures might be used in risk-rating, i.e., in individualizing insur-
ance premiums. While risk-rating is used routinely in casualty and property
insurance underwriting, for example by increasing premiums in response to
recent claims or by taking location into account, it can be politically sen-
sitive in a life-insurance and pension context. In particular, while gender
differences in mortality can be used in calculating insurance and annuity
premiums, as can certain life-style factors like smoking, it is currently illegal
to use racial and genetic differences in this way.

All life insurers must be conscious of the extent to which their policyhold-
ers as a group differ from the general population with respect to mortality.
Insurers can collect special mortality tables on special groups, such as em-
ployee groups or voluntary organizations, and regression-type models like the
Cox proportional-hazards model may be useful in quantifying group mortal-
ity differences when the special-group mortality tables are not based upon
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large enough cohorts for long enough times to be fully reliable. See Chapter
6, Section 6.3, for discussion about the modification of insurance premiums
for select groups.

2.3 Exercise Set 2

(1). The sum of the present value of $1 paid at the end of n years and
$1 paid at the end of 2n years is $1. Find (1+ r)2n, where r = annual
interest rate, compounded annually.

(2). Suppose that an individual aged 20 has random lifetime Z with
continuous density function

fZ(t) =
1

360

(

1 +
t

10

)

, for 20 ≤ t ≤ 80

and 0 for other values of t.

(a) If this individual has a contract with your company that you must
pay his heirs $106 · (1.4−Z/50) at the exact date of his death if this occurs
between ages 20 and 70, then what is the expected payment ?

(b) If the value of the death-payment described in (a) should properly be
discounted by the factor exp(−0.08 · (Z − 20)), i.e. by the nominal interest
rate of e0.08 − 1 per year) to calculate the present value of the payment,
then what is the expected present value of the payment under the insurance
contract ?

(3). Suppose that a continuous random variable T has hazard rate function
(= force of mortality)

h(t) = 10−3 ·
[

7.0 − 0.5t + 2et/20
]

, t > 0

This is a legitimate hazard rate of Gompertz-Makeham type since its mini-
mum, which occurs at t = 20 ln(5), is (17−10 ln(5)) ·10−4 = 9.1 ·10−5 > 0.

(a) Construct a cohort life-table with h(t) as “force of mortality”, based
on integer ages up to 70 and cohort-size (= “radix”) l0 = 105. (Give the
numerical entries, preferably by means of a little computer program. If you
do the arithmetic using hand-calculators and/or tables, stop at age 20.)
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(b) What is the probability that the random variable T exceeds 30, given
that it exceeds 3 ? Hint: find a closed-form formula for S(t) = P (T ≥ t).

(4). Do the Mortgage-Refinancing exercise given in the Illustrative on mort-
gage refinancing at the end of Section 2.1.

(5). (a) The mortality pattern of a certain population may be described as
follows: out of every 98 lives born together, one dies annually until there
are no survivors. Find a simple function that can be used as S(x) for this
population, and find the probability that a life aged 30 will survive to attain
age 35.

(b) Suppose that for x between ages 12 and 40 in a certain population,
10% of the lives aged x die before reaching age x+1 . Find a simple function
that can be used as S(x) for this population, and find the probability that
a life aged 30 will survive to attain age 35.

(6). Suppose that a survival distribution (i.e., survival function based on
a cohort life table) has the property that 1px = γ · (γ2)x for some fixed γ
between 0 and 1, for every real ≥ 0. What does this imply about S(x) ?
(Give as much information about S as you can. )

(7). If the instantaneous interest rate is r(t) = 0.01 t for 0 ≤ t ≤ 3, then
find the equivalent single effective rate of interest or APR for money invested
at interest over the interval 0 ≤ t ≤ 3 .

(8). Find the accumulated value of $100 at the end of 15 years if the nominal
interest rate compounded quarterly (i.e., i(4) ) is 8% for the first 5 years, if
the effective rate of discount is 7% for the second 5 years, and if the nominal
rate of discount compounded semiannually (m = 2) is 6% for the third 5
years.

(9). Suppose that you borrow $1000 for 3 years at 6% APR, to be repaid
in level payments every six months (twice yearly).

(a) Find the level payment amount P .

(b) What is the present value of the payments you will make if you skip
the 2nd and 4th payments ? (You may express your answer in terms of P . )

(10). A survival function has the form S(x) = c−x
c+x

. If a mortality table
is derived from this survival function with a radix l0 of 100,000 at age 0,
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and if l35 = 44, 000 :

(i) What is the terminal age of the table ?

(ii) What is the probability of surviving from birth to age 60 ?

(iii) What is the probability of a person at exact age 10 dying between
exact ages 30 and 45 ?

(11). A separate life table has been constructed for each calendar year of
birth, Y , beginning with Y = 1950. The mortality functions for the
various tables are denoted by the appropriate superscript Y . For each Y
and for all ages x

µY
x = A · k(Y ) + B cx , pY +1

x = (1 + r) pY
x

where k is a function of Y alone and A, B, r are constants (with r > 0).
If k(1950) = 1, then derive a general expression for k(Y ).

(12). A standard mortality table follows Makeham’s Law with force of
mortality

µx = A + B cx at all ages x

A separate, higher-risk mortality table also follows Makeham’s Law with
force of mortality

µ∗

x = A∗ + B∗ cx at all ages x

with the same constant c. If for all starting ages the probability of surviving
6 years according to the higher-risk table is equal to the probability of
surviving 9 years according to the standard table, then express each of A∗

and B∗ in terms of A, B, c.

(13). A homeowner borrows $100, 000 at 7% APR from a bank, agreeing
to repay by 30 equal yearly payments beginning one year from the time of
the loan.

(a) How much is each payment ?

(b) Suppose that after paying the first 3 yearly payments, the homeowner

misses the next two (i.e. pays nothing on the 4th and 5th anniversaries of

the loan). Find the outstanding balance at the 6th anniversary of the loan,
figured at 7% ). This is the amount which, if paid as a lump sum at time
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6, has present value together with the amounts already paid of $100, 000 at
time 0.

(14). A deposit of 300 is made into a fund at time t = 0. The fund pays
interest for the first three years at a nominal monthly rate d(12) of discount.
From t = 3 to t = 7, interest is credited according to the force of interest
δt = 1/(3t + 3). As of time t = 7, the accumulated value of the fund is
574. Calculate d(12).

(15). Calculate the price at which you would sell a $10, 000 30-year coupon
bond with nominal 6% semi-annual coupon (n = 30, m − 2, i(m) = 0.06),
15 years after issue, if for the next 15 years, the effective interest rate for
valuation is iAPR = 0.07.

(16). Calculate the price at which you would sell a 30-year zero-coupon bond
with face amount $10, 000 initially issued 15 years ago with i = iAPR = 0.06,
if for the next 15 years, the effective interest rate for valuation is iAPR = 0.07.

2.4 Worked Examples

Example 1. How large must a half-yearly payment be in order that the stream
of payments starting immediately be equivalent (in present value terms) at
6% interest to a lump-sum payment of $5000, if the payment-stream is to
last (a) 10 years, (b) 20 years, or (c) forever ?

If the payment size is P , then the balance equation is

5000 = 2P · ä
(2)
n⌉ = 2 P

1 − 1.06−n

d(2)

Since d(2) = 2(1 − 1/
√

1.06) = 2 · 0.02871, the result is

P = (5000 · 0.02871)/(1 − 1.06−n) = 143.57/(1 − 1.06−n)

So the answer to part (c), in which n = ∞, is $143.57. For parts (a) and
(b), respectively with n = 10 and 20, the answers are $325.11, $208.62.

Example 2. Assume m is divisible by 2. Express in two differ-
ent ways the present value of the perpetuity of payments 1/m at times
1/m, 3/m, 5/m, . . . , and use either one to give a simple formula.
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This example illustrates the general methods enunciated at the beginning
of Section 2.1. Observe first of all that the specified payment-stream is
exactly the same as a stream of payments of 1/m at times 0, 2/m, 4/m, . . .
forever, deferred by a time 1/m. Since this payment-stream starting at 0

is exactly one-half that of the stream whose present value is ä
(m/2)
∞⌉ , a first

present value expression is

v1/m 1

2
ä

(m/2)
∞⌉

A second way of looking at the payment-stream at odd multiples of 1/m
is as the perpetuity-due payment stream ( 1/m at times k/m for all
k ≥ 0) minus the payment-stream discussed above of amounts 1/m at
times 2k/m for all nonnegative integers k. Thus the present value has the
second expression

ä
(m)
∞⌉ − 1

2
ä

(m/2)
∞⌉

Equating the two expressions allows us to conclude that

1

2
ä

(m/2)
∞⌉ = ä

(m)
∞⌉

/

(1 + v1/m)

Substituting this into the first of the displayed present-value expressions, and
using the simple expression 1/d(m) for the present value of the perpetuity-
due, shows that that the present value requested in the Example is

1

d(m)
· v1/m

1 + v1/m
=

1

d(m) (v−1/m + 1)
=

1

d(m) (2 + i(m)/m)

and this answer is valid whether or not m is even.

Example 3. Suppose that you are negotiating a car-loan of $10, 000. Would
you rather have an interest rate of 4% for 4 years, 3% for 3 years, 2% for
2 years, or a cash discount of $500 ? Show how the answer depends upon
the interest rate with respect to which you calculate present values, and give
numerical answers for present values calculated at 6% and 8%. Assume that
all loans have monthly payments paid at the beginning of the month (e.g., the
4 year loan has 48 monthly payments paid at time 0 and at the ends of 47
succeeding months).

The monthly payments for an n-year loan at interest-rate i is 10000/

(12 ä
(12)
n⌉ ) = (10000/12) d(12)/(1 − (1 + i)−n). Therefore, the present value
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at interest-rate r of the n-year monthly payment-stream is

10000 · 1 − (1 + i)−1/12

1 − (1 + r)−1/12
· 1 − (1 + r)−n

1 − (1 + i)−n

Using interest-rate r = 0.06, the present values are calculated as follows:

For 4-year 4% loan: $9645.77

For 3-year 3% loan: $9599.02

For 2-year 2% loan: $9642.89

so that the most attractive option is the cash discount (which would make
the present value of the debt owed to be $9500). Next, using interest-rate
r = 0.08, the present values of the various options are:

For 4-year 4% loan: $9314.72

For 3-year 3% loan: $9349.73

For 2-year 2% loan: $9475.68

so that the most attractive option in this case is the 4-year loan. (The cash
discount is now the least attractive option.)

Example 4. Suppose that the force of mortality µ(y) is specified for exact
ages y ranging from 5 to 55 as

µ(y) = 10−4 · (20 − 0.5|30 − y|)
Then find analytical expressions for the survival probabilities S(y) for exact
ages y in the same range, and for the (one-year) death-rates qx for integer
ages x = 5, . . . , 54, assuming that S(5) = 0.97.

The key formulas connecting force of mortality and survival function are
here applied separately on the age-intervals [5, 30] and [30, 55], as follows.
First for 5 ≤ y ≤ 30,

S(y) = S(5) exp(−
∫ y

5

µ(z) dz) = 0.97 exp
(

−10−4(5(y−5)+0.25(y2−25))
)

so that S(30) = 0.97 e−0.034375 = 0.93722, and for 30 ≤ y ≤ 55

S(y) = S(30) exp
(

− 10−4

∫ y

30

(20 + 0.5(30 − z)) dz
)
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= 0.9372 exp
(

− .002(y − 30) + 2.5 · 10−5(y − 30)2
)

The death-rates qx therefore have two different analytical forms: first, in
the case x = 5, . . . , 29,

qx = S(x + 1)/S(x) = exp
(

− 5 · 10−5 (10.5 + x)
)

and second, in the case x = 30, . . . , 54,

qx = exp
(

− .002 + 2.5 · 10−5(2(x − 30) + 1)
)
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2.5 Useful Formulas from Chapter 2

v = 1/(1 + i)

p. 26

a
(m)
n⌉ =

1 − vn

i(m)
, ä

(m)
n⌉ =

1 − vn

d(m)

pp. 27–27

an⌉m = v1/m än⌉m

p. 27

ä
(∞)
n⌉ = an⌉∞ = an =

1 − vn

δ
p. 27

a
(m)
∞⌉ =

1

i(m)
, ä∞⌉m =

1

d(m)

p. 28

(I(m)ä)
(m)
n⌉ = ä

(m)
∞⌉

(

ä
(m)
n⌉ − n vn

)

p. 30

(D(m)ä)
(m)
n⌉ = (n +

1

m
) ä

(m)
n⌉ − (I(m)ä)

(m)
n⌉

p. 30

n-yr m’thly Mortgage Paymt :
Loan Amt

m ä
(m)
n⌉

p. 31
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n-yr Mortgage Bal. at
k

m
+ : Bn,k/m =

1 − vn−k/m

1 − vn

p. 32

tpx =
S(x + t)

S(x)
= exp

(

−
∫ t

0

µ(x + s) ds

)

p. 40

tpx = 1 − tpx

p. 40

qx = 1qx =
dx

lx
, px = 1px = 1 − qx

p. 40

µ(x + t) =
f(x + t)

S(x + t)
= − ∂

∂t
ln S(x + t) = − ∂

∂t
ln lx+t

p. 41

S(x) = exp(−
∫ x

0

µ(y) dy)

p. 44

Unif. Failure Dist.: S(x) =
ω − x

ω
, f(x) =

1

ω
, 0 ≤ x ≤ ω

p. 44

Expon. Dist.: S(x) = e−µx , f(x) = µe−µx , µ(x) = µ , x > 0

p. 44
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Weibull. Dist.: S(x) = e−λxγ

, µ(x) = λγxγ−1 , x > 0

p. 44

Makeham: µ(x) = A + Bcx , x ≥ 0

Gompertz: µ(x) = Bcx , x ≥ 0

S(x) = exp

(

−Ax − B

ln c
(cx − 1)

)

p. 46
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