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Chapter 3

More Probability Theory for
Life Tables

3.1 Interpreting Force of Mortality

This Section consists of remarks, relating the force of mortality for a con-
tinuously distributed lifetime random variable T (with continuous density
function f ) to conditional probabilities for discrete random variables. In-
deed, for m large (e.g. as large as 4 or 12), the discrete random variable
[Tm]/m gives a close approximation to T and represents the attained age
at death measured in whole-number multiples of fractions h = one mth of
a year. (Here [·] denotes the greatest integer less than or equal to its real
argument.) Since surviving an additional time t = nh can be viewed as
successively surviving to reach times h, 2h, 3h, . . . , nh, and since (by the
definition of conditional probability)

P (A1 ∩ · · · ∩ An) = P (A1) · P (A2|A1) · · ·P (An|A1 ∩ · · · ∩ An−1)

we have (with the interpretation Ak = {T ≥ x + kh} )

nhpx = hpx · hpx+h · hpx+2h · · · hpx+(n−1)h

The form in which this formula is most often useful is the case h = 1: for
integers k ≥ 2,

kpx = px · px+1 · px+2 · · · px+k−1 (3.1)

63



64 CHAPTER 3. PROBABILITY & LIFE TABLES

Every continuous waiting-time random variable can be approximated by
a discrete random variable with possible values which are multiples of a
fixed small unit h of time, and therefore the random survival time can
be viewed as the (first failure among a) succession of results of a sequence
of independent coin-flips with successive probabilities hpkh of heads. By
the Mean Value Theorem applied up to second-degree terms on the function
S(x + h) expanded about h = 0,

S(x+h) = S(x) + hS ′(x) +
h2

2
S ′′(x+τh) = S(x) − hf(x) − h2

2
f ′(x+τh)

for some 0 < τ < 1, if f is continuously differentiable. Therefore, using
the definition of µ(x) as f(x)/S(x) given on page 41,

hpx = 1 − h ·
[S(x) − S(x + h)

hS(x)

]

= 1 − h
(

µ(x) +
h

2

f ′(x + τh)

S(x)

)

Going in the other direction, the previously derived formula

hpx = exp

(

−
∫ x+h

x

µ(y) dy

)

can be interpreted by considering the fraction of individuals observed to reach
age x who thereafter experience hazard of mortality µ(y) dy on successive
infinitesimal intervals [y, y+dy] within [x, x+h). The lives aged x survive
to age x + h with probability equal to a limiting product of infinitesimal
terms (1−µ(y) dy) ∼ exp(−µ(y) dy), yielding an overall conditional survival
probability equal to the negative exponential of accumulated hazard over
[x, x + h).

3.2 Interpolation Between Integer Ages

There is a Taylor-series justification of “actuarial approximations” for life-
table related functions. Let g(x) be a smooth function with small |g′′(x)| ,
and let T be the lifetime random variable (for a randomly selected member
of the population represented by the life-table), with [T ] denoting its integer
part, i.e., the largest integer k for which k ≤ T . Then by the Mean Value
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Theorem, applied up to second-degree terms for the function g(t) = g(k+u)
(with t = k + u, k = [t]) expanded in u ∈ (0, 1) about 0,

E(g(T )) = E(g([T ]) + (T − [T ]) g′([T ]) +
1

2
(T − [T ])2 g′′(T∗)) (3.2)

where T∗ lies between [T ] and T . Now in case the rate-of-change of
g′ is very small, the third term may be dropped, providing the approximate
formula

E(g(T )) ≈ Eg([T ]) + E
(

(T − [T ]) g′([T ])
)

(3.3)

Simplifications will result from this formula especially if the behavior of con-
ditional probabilities concerning T − [T ] given [T ] = k turns out not to
depend upon the value of k. (This property can be expressed by saying
that the random integer [T ] and random fractional part T − [T ] of the
age at death are independent random variables.) This is true in particular
if it is also true that P (T − [T ] ≥ s | k ≤ T < k + 1) is approximately
1 − s for all k and for 0 < s < 1, as would be the case if the density
of T were constant on each interval [k, k + 1) (i.e., if the distribution
of T were conditionally uniform given [T ] ): then T − [T ] would be
uniformly distributed on [0, 1), with density f(s) = 1 for 0 ≤ s < 1. Then
E((T − [T ]) g′([T ])) = E(g′([T ]))/2, implying by (3.3) that

E(g(T )) ≈ E(g([T ]) +
1

2
g′([T ])) ≈ E

(

g([T ] +
1

2
)
)

where the last step follows by the first-order Taylor approximation

g(k + 1/2) ≈ g(k) +
1

2
g′(k)

One particular application of the ideas of the previous paragraph concern
so-called expected residual lifetimes. Demographers tabulate, for all integer
ages x in a specified population, what is the average number ex of remaining
years of life to individuals who have just attained exact age x. This is a
quantity which, when compared across national or generational boundaries,
can give some insight into the way societies differ and change over time.
In the setting of the previous paragraph, we are considering the function
g(t) = t−x for a fixed x, and calculating expectations E(·) conditionally
for a life aged x, i.e. conditionally given T ≥ x. In this setting, the
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approximation described above says that if we can treat the density of T
as constant within each whole year of attained integer age, then

Mean (complete) residual lifetime =
◦
ex ≈ ex +

1

2

where ex denotes the so-called curtate mean residual life which measures
the expectation of [T ] − x given T ≥ x, i.e., the expected number of
additional birthdays or whole complete years of life to a life aged exactly x.

“Actuarial approximations” often involve an assumption that a life-table
time until death is conditionally uniformly distributed, i.e., its density is
piecewise-constant, over intervals [k, k+1) of age. The following paragraphs
explore this and other possibilities for survival-function interpolation between
integer ages.

One approach to approximating survival and force-of-mortality functions
at non-integer values is to use analytical or what statisticians call parametric
models S(x; ϑ) arising in Examples (i)-(v) above, where ϑ denotes in each
case the vector of real parameters needed to specify the model. Data on
survival at integer ages x can be used to estimate or fit the value of the
scalar or vector parameter ϑ, after which the model S(x; ϑ) can be used
at all real x values. We will see some instances of this in the exercises.
The disadvantage of this approach is that actuaries do not really believe that
any of the simple models outlined above ought to fit the whole of a human
life table. Nevertheless they can and do make assumptions on the shape of
S(x) in order to justify interpolation-formulas between integer ages.

Now assume that values S(k) for k = 0, 1, 2, . . . have been specified or
estimated. Approximations to S(x), f(x) and µ(x) between integers are
usually based on one of the following assumptions:

(i) (Piecewise-uniform density) f(k + t) is constant for 0 ≤ t < 1 ;

(ii) (Piecewise-constant hazard) µ(k + t) is constant for 0 ≤ t < 1 ;

(iii) (Balducci hypothesis) 1/S(k + t) is linear for 0 ≤ t < 1 .

Note that for integers k and 0 ≤ t ≤ 1,

S(k + t)
− ln S(k + t)
1/S(k + t)







is linear in t under







assumption (i)
assumption (ii)
assumption (iii)

(3.4)
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Under assumption (i), the slope of the linear function S(k + t) at t = 0 is
− f(k), which implies easily that S(k + t) = S(k) − tf(k), i.e.,

f(k) = S(k) − S(k + 1) , and µ(k + t) =
f(k)

S(k) − tf(k)

so that under (i),

µ(k +
1

2
) = fT (k +

1

2
)
/

ST (k +
1

2
) (3.5)

Under (ii), where µ(k + t) = µ(k), (3.5) also holds, and

S(k + t) = S(k) e−t µ(k) , and pk =
S(k + 1)

S(k)
= e−µ(k)

Under (iii), for 0 ≤ t < 1,

1

S(k + t)
=

1

S(k)
+ t
( 1

S(k + 1)
− 1

S(k)

)

(3.6)

When equation (3.6) is multiplied through by S(k + 1) and terms are
rearranged, the result is

S(k + 1)

S(k + t)
= t + (1 − t)

S(k + 1)

S(k)
= 1 − (1 − t) qk (3.7)

Recalling that tqk = 1 − (S(k + t)/S(k)), reveals assumption (iii) to be
equivalent to

1−tqk+t = 1 − S(k + 1)

S(k + t)
= (1 − t)

(

1 − S(k + 1)

S(k)

)

= (1 − t) qk (3.8)

Next differentiate the logarithm of the formula (3.7) with respect to t, to
show (still under (iii)) that

µ(k + t) = − ∂

∂t
ln S(k + t) =

qk

1 − (1 − t)qk

(3.9)

The most frequent insurance application for the interpolation assump-
tions (i)-(iii) and associated survival-probability formulas is to express prob-
abilities of survival for fractional years in terms of probabilities of whole-year
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survival. In terms of the notations tpk and qk for integers k and 0 < t < 1,
the formulas are:

tpk = 1 − (S(k) − t(S(k + 1) − S(k))

S(k)
= 1 − t qk under (i) (3.10)

tpk =
S(k + t)

S(x)
=
(

e−µ(k)
)t

= (1 − qk)
t under (ii) (3.11)

tpk =
S(k + t)

S(k + 1)

S(k + 1)

S(k)
=

1 − qk

1 − (1 − t)qk

under (iii) (3.12)

The application of all of these formulas can be understood in terms of the
formula for expectation of a function g(T ) of the lifetime random variable T .
(For a concrete example, think of g(T ) = (1 + i)−T as the present value to
an insurer of the payment of $1 which it will make instantaneously at the
future time T of death of a newborn which it undertakes to insure.) Then
assumptions (i), (ii), or (iii) via respective formulas (3.10), (3.11), and (3.12)
are used to substitute into the final expression of the following formulas:

E
(

g(T )
)

=

∫ ∞

0

g(t) f(t) dt =
ω−1
∑

k=0

∫ 1

0

g(t + k) f(t + k) dt

=
ω−1
∑

k=0

S(k)

∫ 1

0

g(t + k)
(

− ∂

∂t
tpk

)

dt

3.3 Binomial Variables &

Law of Large Numbers

This Section develops just enough machinery for the student to understand
the probability theory for random variables which count numbers of successes
in large numbers of independent biased coin-tosses. The motivation is that in
large life-table populations, the number lx+t who survive t time-units after
age x can be regarded as the number of successes or heads in a large number
lx of independent coin-toss trials corresponding to the further survival of each
of the lx lives aged x , which for each such life has probability tpx. The one
preliminary piece of mathematical machinery which the student is assumed
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to know is the Binomial Theorem stating that (for positive integers N
and arbitrary real numbers x, y, z),

(1 + x)N =
N
∑

k=0

(

N

k

)

xk , (y + z)N =
N
∑

k=0

(

N

k

)

yk zN−k

Recall that the first of these assertions follows by equating the kth deriv-
iatives of both sides at x = 0, where k = 0, . . . , N . The second assertion
follows immediately, in the nontrivial case when z 6= 0, by applying the first
assertion with x = y/z and multiplying both sides by zN . This Theo-
rem also has a direct combinatorial consequence. Consider the two-variable
polynomial

(y + z)N = (y + z) · (y + z) · · · (y + z) N factors

expanded by making all of the different choices of y or z from each of
the N factors (y + z), multiplying each combination of choices out to
get a monomial yj zN−j, and adding all of the monomials together. Each
combined choice of y or z from the N factors (y +z) can be represented
as a sequence (a1, . . . , an) ∈ {0, 1}N , where ai = 1 would mean that y

is chosen ai = 0 would mean that z is chosen in the ith factor. Now
a combinatorial fact can be deduced from the Binomial Theorem: since the
coefficient

(

N
k

)

is the total number of monomial terms yk zN−k which are
collected when (y+z)N is expanded as described, and since these monomial
terms arise only from the combinations (a1, . . . , aN) of {y, z} choices in
which precisely k of the values aj are 1’s and the rest are 0’s,

The number of symbol-sequences (a1, . . . , aN) ∈ {0, 1}N such
that

∑N
j=1 aj = k is given by

(

N
k

)

, for k = 0, 1, . . . , N . This
number

(

N

k

)

=
N(N − 1) · · · (N − k + 1)

k!

spoken as ‘N choose k’, therefore counts all of the ways of choosing
k element subsets (the positions j from 1 to N where 1’s occur)
out of N objects.

The random experiment of interest in this Section consists of a large num-
ber N of independent tosses of a coin, with probability p of coming up heads



70 CHAPTER 3. PROBABILITY & LIFE TABLES

each time. Such coin-tossing experiments — independently replicated two-
outcome experiments with probability p of one of the outcomes, designated
‘success’ — are called Bernoulli(p) trials. The space of possible heads-
and-tails configurations, or sample space for this experiment, consists of the
strings of N zeroes and ones, with each string a = (a1, . . . , aN) ∈ {0, 1}N

being assigned probability pa (1− p)N−a, where a ≡∑N
j=1 aj. The rule by

which probabilities are assigned to sets or events A of more than one string
a ∈ {0, 1}N is to add the probabilities of all individual strings a ∈ A. We
are particularly interested in the event (denoted [X = k]) that precisely k
of the coin-tosses are heads, i.e., in the subset [X = k] ⊂ {0, 1}N consisting
of all strings a such that

∑N
j=1 aj = k. Since each such string has the same

probability pk (1 − p)N−k, and since, according to the discussion following
the Binomial Theorem above, there are

(

N
k

)

such strings, the probability
which is necessarily assigned to the event of k successes is

P( k successes in N Bernoulli(p) trials ) = P (X = k) =

(

N

k

)

pk (1−p)N−k

By virtue of this result, the random variable X equal to the number of suc-
cesses in N Bernoulli(p) trials, is said to have the Binomial distribution
with probability mass function pX(k) =

(

N
k

)

pk (1 − p)N−k.

With the notion of Bernoulli trials and the binomial distribution in hand,
we now begin to regard the ideal probabilities S(x + t)/S(x) as true but
unobservable probabilities tpx = p with which each of the lx lives aged x
will survive to age x + t . Since the mechanisms which cause those lives
to survive or die can ordinarily be assumed to be acting independently in a
probabilistic sense, we can regard the number lx+t of lives surviving to the
(possibly fractional) age x+t as a Binomial random variable with parameters
N = lx, p = tpx. From this point of view, the observed life-table counts
lx should be treated as random data which reflect but do not define the
underlying probabilities xp0 = S(x) of survival to age x. However, common
sense and experience suggest that, when l0 is large, and therefore the other
life-counts lx for moderate values x are also large, the observed ratios
lx+t/lx should reliably be very close to the ‘true’ probability tpx. In other
words, the ratio lx+t/lx is a statistical estimator of the unknown constant

tpx . The good property, called consistency, of this estimator to be close with
very large probability (based upon large life-table size) to the probability it
estimates, is established in the famous Law of Large Numbers. The
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precise quantitative inequality proved here concerning binomial probabilities
is called a Large Deviation Inequality and is very important in its own right.

Theorem 3.3.1 Suppose that X is a Binomial(N, p) random variable,
denoting the number of successes in N Bernoulli(p) trials.

(a) Large Deviation Inequalities. If 1 > b > p > c > 0, then

P (X ≥ Nb) ≤ exp
{

− N
[

b ln

(

b

p

)

+ (1 − b) ln

(

1 − b

1 − p

)

]}

P (X ≤ Nc) ≤ exp
{

− N
[

c ln

(

c

p

)

+ (1 − c) ln

(

1 − c

1 − p

)

]}

(b) Law of Large Numbers. For arbitrarily small fixed δ > 0, not de-
pending upon N , the number N of Bernoulli trials can be chosen so large
that

P
(∣

∣

∣

X

N
− p

∣

∣

∣
≥ δ
)

≤ δ

Proof. After the first inequality in (a) is proved, the second inequality
will be derived from it, and part (b) will follow from part (a). Since the
event [X ≥ Nb] is the union of the disjoint events [X = k] for k ≥ Nb,
which in turn consist of all outcome-strings (a1, . . . , aN) ∈ {0, 1}N for
which

∑N
j=1 aj = k ≥ Nb, a suitable subset of the binomial probability

mass function values pX(k) are summed to provide

P (X ≥ Nb) =
∑

k:Nb≤k≤N

P (X = k) =
∑

k≥Nb

(

N

k

)

pk (1 − p)N−k

For every s > 1, this probability is

≤
∑

k≥Nb

(

N

k

)

pk (1 − p)N−k sk−Nb = s−Nb
∑

k≥Nb

(

N

k

)

(ps)k (1 − p)N−k

≤ s−Nb

N
∑

k=0

(

N

k

)

(ps)k (1 − p)N−k = s−Nb (1 − p + ps)N
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Here extra terms (corresponding to k < Nb) have been added in the next-
to-last step, and the binomial theorem was applied in the last step. The trick
in the proof comes now: since the left-hand side of the inequality does not
involve s while the right-hand side does, and since the inequality must be
valid for every s > 1, it remains valid if the right-hand side is minimized
over s. The calculus minimum does exist and is unique, as you can check by
calculating that the second derivative in s is always positive. The minimum
occurs where the first derivative of the logarithm of the last expression is 0,
i.e., at s = b(1 − p)/(p(1 − b)). Substituting this value for s yields

P (X ≥ Nb) ≤
(

b (1 − p)

p (1 − b)

)−Nb (
1 − p

1 − b

)N

= exp

(

−N
[

b ln
( b

p

)

+ (1 − b) ln
(1 − b

1 − p

)]

)

as desired.

The second part of assertion (a) follows from the first. Replace X by
Y = N − X. Since Y also is a count of ‘successes’ in Bernoulli(1 − p)
trials, where the ‘successes’ counted by Y are precisely the ‘failures’ in the
Bernoulli trials defining X, it follows that Y also has a Binomial(N, q)
distribution, where q = 1 − p. Note also that c < p implies b = 1 − c >
1 − p = q. Therefore, the first inequality applied to Y instead of X with
q = 1 − p replacing p and b = 1 − c, gives the second inequality for
P (Y ≥ Nb) = P (X ≤ Nc).

Note that for all r between 0, 1, the quantity r ln r
p

+ (1 − r) ln 1−r
1−p

as a function of r is convex and has a unique minimum of 0 at r =
p. Therefore when b > p > c, the upper bound given in part (a) for
N−1 ln P ([X ≥ bN ] ∪ [X ≤ cN ]) is strictly negative and does not involve
N . For part (b), let δ ∈ (0, min(p, 1 − p)) be arbitrarily small, choose
b = p + δ, c = p − δ, and combine the inequalities of part (a) to give the
precise estimate (b).

P (|X
N

− p| ≥ δ) ≤ 2 · exp(−Na) (3.13)

where

a = min
(

(p + δ) ln(1 + δ
p
) + (1 − p − δ) ln(1 − δ

1−p
) ,

(p − δ) ln(1 − δ
p
) + (1 − p + δ) ln(1 + δ

1−p
)
)

> 0 (3.14)



3.3. BINOMIAL VARIABLES & LAW OF LARGE NUMBERS 73

This last inequality proves (b), and in fact gives a much stronger and numer-
ically more useful upper bound on the probability with which the so-called
relative frequency of success X/N differs from the true probability p of
success by as much as δ. The probabilities of such large deviations between
X/N and δ are in fact exponentially small as a function of the number N
of repeated Bernoulli(p) trials, and the upper bounds given in (a) on the
log-probabilities divided by N turn out to be the correct limits for large
N of these normalized log-probabilities. 2

3.3.1 Exact Probabilities, Bounds & Approximations

Suppose first that you are flipping 20, 000 times a coin which is supposed to
be fair (i.e., to have p = 1/2) . The probability that the observed number of
heads falls outside the range [9800, 10200] is, according to the inequalities
above,

≤ 2 · exp
[

− 9800 ln(0.98) − 10200 ln(1.02)
]

= 2 e−4.00 = 0.037

The inequalities (3.13)-(3.14) give only an upper bound for the actual bino-
mial probability, and 0.0046 is the exact probability with which the relative
frequency of heads based on 20000 fair coin-tosses lies outside the range
(0.98, 1.02). The ratio of the upper bound to the actual probability is rather
large (about 8), but the absolute errors are small.

To give a feeling for the probabilities with which observed life-table ratios
reflect the true underlying survival-rates, we have collected in Table 3.3.1 var-
ious exact binomial probabilities and their counterparts from the inequalities
of Theorem 3.3.1(a). The illustration concerns cohorts of lives aged x of var-
ious sizes lx, together with ‘theoretical’ probabilities kpx with which these
lives will survive for a period of k = 1, 5, or 10 years. The probability ex-
periment determining the size of the surviving cohort lx+k is modelled as the
tossing of lx independent coins with common heads-probability kpx: then
the surviving cohort-size lx+k is viewed as the Binomial(lx, kpx) random
variable equal to the number of heads in those coin-tosses. In Table 3.3.1 are
given various combinations of x, lx, k, kpx which might realistically arise in
an insurance-company life-table, together, with the true and estimated (from
Theorem 3.3.1) probabilities with which the ratios lx+k/lx agree with kpx
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to within a fraction δ of the latter. The formulas used to compute columns
6 and 7 of the table are (for n = lx, p = kpx):

True binomial probability =
∑

j:j/(np)∈[1−δ,1+δ]

(

n

j

)

pj (1 − p)n−j

Lower bound for probability = 1 − (1+δ)−np(1+δ)

(

1 − pδ

1 − p

)−n(1−p−pδ)

− (1 − δ)−np(1−δ)

(

1 +
pδ

1 − p

)−n(1−p+pδ)

Columns 6 and 7 in the Table show how likely the life-table ratios are to be
close to the ‘theoretical’ values, but also show that the lower bounds, while
also often close to 1, are still noticeably smaller than the actual values. .

Much closer approximations to the exact probabilities for Binomial(n, p)
random variables given in column 6 of Table 3.3.1 are obtained from the
Normal distribution approximation

P (a ≤ X ≤ b) ≈ Φ

(

b − np
√

np(1 − p)

)

− Φ

(

a − np
√

np(1 − p)

)

(3.15)

where Φ is the standard normal distribution function given explicitly in
integral form in formula (3.20) below. This approximation is the DeMoivre-
Laplace Central Limit Theorem (Feller vol. 1, 1957, pp. 168-73), which
says precisely that the difference between the left- and right-hand sides of
(3.15) converges to 0 when p remains fixed, n → ∞. Moreover, the
refined form of the DeMoivre-Laplace Theorem given in the Feller (1957,
p. 172) reference says that each of the ratios of probabilities

P (X < a)
/

Φ
( a − np
√

np(1 − p)

)

, P (X > b)
/[

1 − Φ
( b − np
√

np(1 − p)

)]

converges to 1 if the ‘deviation’ ratios (b − np)/
√

np(1 − p) and (a −
np)/

√

np(1 − p) are of smaller order than n−1/6 when n gets large. This
result suggests the approximation

Normal approximation = Φ

(

npδ
√

np(1 − p)

)

− Φ

(

−npδ
√

np(1 − p)

)
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Table 3.1: Probabilities (in col. 6) with which various Binomial(lx, kpx)
random variables lie within a factor 1 ± δ of their expectations, together
with lower bounds for these probabilities derived from the large-deviation
inequalities (3.13)-(3.14). The final column contains the normal-distribution
(Central-Limit) approximations to the exact probabilities in column 6.

Cohort Age Time Prob. Toler. Pr. within Lower Normal
n = lx x k p =k px frac. δ within 1 ± δ bound approx.

10000 40 3 0.99 .003 .9969 .9760 .9972
10000 40 5 0.98 .004 .9952 .9600 .9949
10000 40 10 0.94 .008 .9985 .9866 .9985
1000 40 10 0.94 .020 .9863 .9120 .9877

10000 70 5 0.75 .020 .9995 .9950 .9995
1000 70 5 0.75 .050 .9938 .9531 .9938

10000 70 10 0.50 .030 .9973 .9778 .9973
1000 70 10 0.50 .080 .9886 .9188 .9886

for the true binomial probability P (|X − np| ≤ npδ), the formula of which
is displayed above. Although the deviation-ratios in this setting are actually
close to n−1/6, not smaller as they should be for applicability of the cited
result of Feller, the normal approximations in the final column of Table 3.3.1
below are sensationally close to the correct binomial probabilities in column
6. A still more refined theorem which justifies this is given by Feller (1972,
section XVI.7 leading up to formula 7.28, p. 553).

If the probabilities in Theorem 3.3.1(a) are generally much smaller than
the upper bounds given for them, then why are those bounds of interest ?
(These are 1 minus the probabilities illustrated in Table 3.3.1.) First,
they provide relatively quick hand-calculated estimates showing that large
batches of independent coin-tosses are extremely unlikely to yield relative
frequencies of heads much different from the true probability or limiting
relative frequency of heads. Another, more operational, way to render this
conclusion of Theorem 3.3.1(b) is that two very large insured cohorts with the
same true survival probabilities are very unlikely to have materially different
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survival experience. However, as the Table illustrates, for practical purposes
the normal approximation to the binomial probabilities of large discrepancies
from the expectation is generally much more precise than the large deviation
bounds of Theorem 3.3.1(a).

The bounds given in Theorem 3.3.1(a) get small with large N much
more rapidly than simpler bounds based on Chebychev’s inequality (cf. Hogg
and Tanis 1997, Larsen and Marx 1985, or Larson 1982). We can tolerate
the apparent looseness in the bounds because it can be shown that the ex-
ponential rate of decay as a function of N in the true tail-probabilities
PN = P (X ≥ Nb) or P (X ≤ Nc) in Theorem 3.3.1(a) (i.e., the constants
appearing in square brackets in the exponents on the right-hand sides of the
bounds) are exactly the right ones: no larger constants replacing them could
give correct bounds.

3.4 Simulation of Life Table Data

We began by regarding life-table ratios lx/l0 in large cohort life-tables as
defining integer-age survival probabilities S(x) = xp0. We said that if the
life-table was representative of a larger population of prospective insureds,
then we could imagine a newly presented life aged x as being randomly
chosen from the life-table cohort itself. We motivated the conditional prob-
ability ratios in this way, and similarly expectations of functions of life-table
death-times were averages over the entire cohort. Although we found the
calculus-based formulas for life-table conditional probabilities and expec-
tations to be useful, at that stage they were only ideal approximations of
the more detailed but still exact life-table ratios and sums. At the next
stage of sophistication, we began to describe the (conditional) probabilities

tpx ≡ S(x + t)/S(x) based upon a smooth survival function S(x) as a true
but unknown survival distribution, hypothesized to be of one of a number
of possible theoretical forms, governing each member of the life-table cohort
and of further prospective insureds. Finally, we have come to view the life-
table itself as data, with each ratio lx+t/lx equal to the relative frequency of
success among a set of lx Bernoulli(tpx) trials which Nature performs upon
the set of lives aged x . With the mathematical justification of the Law
of Large Numbers, we come full circle: these relative frequencies are random
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variables which are not very random. That is, they are extremely likely to
lie within a very small tolerance of the otherwise unknown probabilities tpx .
Accordingly, the life-table ratios are, at least for very large-radix life tables,
highly accurate statistical estimators of the life-table probabilities which we
earlier tried to define by them.

To make this discussion more concrete, we illustrate the difference be-
tween the entries in a life-table and the entries one would observe as data
in a randomly generated life-table of the same size using the initial life-table
ratios as exact survival probabilities. We used as a source of life-table counts
the Mortality Table for U.S. White Males 1959-61 reproduced as Table 2 on
page 11 of C. W. Jordan’s (1967) book on Life Contingencies. That is, using
this Table with radix l0 = 105 , with counts lx given for integer ages x from
1 through 80, we treated the probabilities px = lx+1/lx for x = 0, . . . , 79 as
the correct one-year survival probabilities for a second, computer-simulated
cohort life-table with radix l∗0 = 105. Using simulated random variables
generated in Splus, we successively generated, as x runs from 1 to 79,
random variables l∗x+1 ∼ Binomial(l∗x, px). In other words, the mechanism of
simulation of the sequence l∗0, . . . , l

∗
79 was to make the variable l∗x+1 depend

on previously generated l∗1, . . . , l
∗
x only through l∗x, and then to generate

l∗x+1 as though it counted the heads in l∗x independent coin-tosses with
heads-probability px. A comparison of the actual and simulated life-table
counts for ages 9 to 79 in 10-year intervals, is given below. The complete
simulated life-table was given earlier as Table 1.1.

The implication of the Table is unsurprising: with radix as high as 105,
the agreement between the initial and randomly generated life-table counts
is quite good. The Law of Large Numbers guarantees good agreement, with
very high probability, between the ratios lx+10/lx (which here play the role of
the probability 10px of success in l∗x Bernoulli trials) and the corresponding
simulated random relative frequencies of success l∗x+10/l

∗
x. For example, with

x = 69, the final simulated count of 28657 lives aged 79 is the success-count in
56186 Bernoulli trials with success-probability 28814/56384 = .51103. With
this success-probability, assertion (a) and the final inequality proved in (b) of
the Theorem show that the resulting count will differ from .51103 · 56186 =
28712.8 by 300 or more (in either direction) with probability at most 0.08.
(Verify this by substituting in the formulas with 300 = δ · 56186).
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Table 3.2: Illustrative Real and Simulated Life-Table Data

Age x 1959-61 Actual Life-Table Simulated lx

9 96801 96753
19 96051 95989
29 94542 94428
39 92705 92576
49 88178 87901
59 77083 76793
69 56384 56186
79 28814 28657

3.4.1 Expectation for Discrete Random Variables

The Binomial random variables which have just been discussed are examples
of so-called discrete random variables, that is, random variables Z with a
discrete (usually finite) list of possible outcomes z, with a corresponding list
of probabilities or probability mass function values pZ(z) with which each of
those possible outcomes occur. (These probabilities pZ(z) must be positive
numbers which summed over all possible values z add to 1.) In an insur-
ance context, think for example of Z as the unforeseeable future damage or
liability upon the basis of which an insurer has to pay some scheduled claim
amount c(Z) to fulfill a specific property or liability insurance policy. The
Law of Large Numbers says that we can have a frequentist operational inter-
pretation of each of the probabilities pZ(z) with which a claim of size c(z)
is presented. In a large population of N independent policyholders, each
governed by the same probabilities pZ(·) of liability occurrences, for each
fixed damage-amount z we can imagine a series of N Bernoulli(pZ(z))

trials, in which the jth policyholder is said to result in a ‘success’ if he
sustains a damage amount equal to z , and to result in a ‘failure’ otherwise.
The Law of Large Numbers for these Bernoulli trials says that the number
out of these N policyholders who do sustain damage z is for large N
extremely likely to differ by no more than δN from N pZ(z).
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Returning to a general discussion, suppose that Z is a discrete random
variable with a finite list of possible values z1, . . . , zm, and let c(·) be a
real-valued (nonrandom) cost function such that c(Z) represents an eco-
nomically meaningful cost incurred when the random variable value Z is
given. Suppose that a large number N of independent individuals give rise
to respective values Zj, j = 1, . . . , N and costs c(Z1), . . . , c(ZN). Here in-
dependent means that the mechanism causing different individual Zj values
is such that information about the values Z1, . . . , Zj−1 allows no change in
the (conditional) probabilities with which Zj takes on its values, so that for
all j, i, and b1, . . . , bj−1,

P (Zj = zi |Z1 = b1, . . . , Zj−1 = bj−1 ) = pZ(zi)

Then the Law of Large Numbers, applied as above, says that out of the
large number N of individuals it is extremely likely that approximately
pZ(k) · N will have their Z variable values equal to k, where k ranges
over {z1, . . . , zm}. It follows that the average costs c(Zj) over the N
independent individuals — which can be expressed exactly as

N−1

N
∑

j=1

c(Zj) = N−1

m
∑

i=1

c(zi) · #{j = 1, . . . , N : Zj = zi}

— is approximately given by

N−1

m
∑

i=1

c(zi) · (N pZ(zi)) =
m
∑

i=1

c(zi) pZ(zi)

In other words, the Law of Large Numbers implies that the average cost
per trial among the N independent trials resulting in random variable
values Zj and corresponding costs c(Zj) has a well-defined approximate
(actually, a limiting) value for very large N

Expectation of cost = E(c(Z)) =
m
∑

i=1

c(zi) pZ(zi) (3.16)

As an application of the formula for expectation of a discrete random
variable, consider the expected value of a cost-function g(T ) of a lifetime
random variable which is assumed to depend on T only through the function
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g([T ]) of the integer part of T . This expectation was interpreted earlier as
the average cost over all members of the specified life-table cohort. Now the
expectation can be verified to coincide with the life-table average previously
given, if the probabilities S(j) in the following expression are replaced by
the life-table estimators lj/l0. Since P ([T ] = k) = S(k) − S(k + 1), the
general expectation formula (3.16) yields

E(g(T )) = E(g([T ]) =
ω−1
∑

k=0

g(k) (S(k) − S(k + 1))

agreeing precisely with formula (1.2).

Just as we did in the context of expectations of functions of the life-
table waiting-time random variable T , we can interpret the Expectation as a
weighted average of values (costs, in this discussion) which can be incurred in
each trial, weighted by the probabilities with which they occur. There is an
analogy in the continuous-variable case, where Z would be a random variable
whose approximate probabilities of falling in tiny intervals [z, z + dz] are
given by fZ(z)dz, where fZ(z) is a nonnegative density function integrating
to 1. In this case, the weighted average of cost-function values c(z) which
arise when Z ∈ [z, z + dz], with approximate probability-weights fZ(z)dz,
is written as a limit of sums or an integral, namely

∫

c(z) f(z) dz.

3.4.2 Rules for Manipulating Expectations

We have separately defined expectation for continuous and discrete random
variables. In the continuous case, we treated the expectation of a specified
function g(T ) of a lifetime random variable governed by the survival function
S(x) of a cohort life-table, as the approximate numerical average of the values
g(Ti) over all individuals i with data represented through observed lifetime
Ti in the life-table. The discrete case was handled more conventionally,
along the lines of a ‘frequentist’ approach to the mathematical theory of
probability. First, we observed that our calculations with Binomial(n, p)
random variables justified us in saying that the sum X = Xn of a large
number n of independent coin-toss variables ǫ1, . . . , , ǫn, each of which is
1 with probability p and 0 otherwise, has a value which with very high
probability differs from n·p by an amount smaller than δn, where δ > 0 is
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an arbitrarily small number not depending upon n. The Expectation p of
each of the variables ǫi is recovered approximately as the numerical average
X/n = n−1

∑n
i=1 ǫi of the independent outcomes ǫi of independent trials.

This Law of Large Numbers extends to arbitrary sequences of independent
and identical finite-valued discrete random variables, saying that

if Z1, Z2, . . . are independent random variables, in the sense
that for all k ≥ 2 and all numbers r,

P (Zk ≤ r |Z1 = z1, . . . , Zk−1 = zk−1 ) = P (Z1 ≤ r)

regardless of the precise values z1, . . . , zk−1, then for each δ > 0,
as n gets large

P
(

|n−1

n
∑

i=1

c(Zi) − E(c(Z1))| ≥ δ
)

−→ 0 (3.17)

where, in terms of the finite set S of possible values of Z ,

E(c(Z1)) =
∑

z∈S

c(z) P (Z1 = z) (3.18)

Although we do not give any further proof here, it is a fact that the same
Law of Large Numbers given in equation (3.17) continues to hold if the
definition of independent sequences of random variables Zi is suitably gen-
eralized, as long as either

Zi are discrete with infinitely many possible values defining a
set S, and the expectation is as given in equation (3.18) above
whenever the function c(z) is such that

∑

z∈S

|c(z)|P (Z1 = z) < ∞

or

the independent random variables Zi are continuous, all with
the same density f(t) such that P (q ≤ Z1 ≤ r) =

∫ r

q
f(t) dt,

and expectation is defined by

E(c(Z1)) =

∫ ∞

−∞
c(t) f(t) dt (3.19)
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whenever the function c(t) is such that
∫ ∞

−∞
|c(t)| f(t) dt < ∞

All of this serves to indicate that there really is no choice in coming
up with an appropriate definition of expectations of cost-functions defined in
terms of random variables Z, whether discrete or continuous. For the rest of
these lectures, and more generally in applications of probability within actu-
arial science, we are interested in evaluating expectations of various functions
of random variables related to the contingencies and uncertain duration of
life. Many of these expectations concern superpositions of random amounts
to be paid out after random durations. The following rules for the manipula-
tion of expectations arising in such superpositions considerably simplify the
calculations. Assume throughout the following that all payments and times
which are not certain are functions of a single lifetime random variable T .

(1). If a payment consists of a nonrandom multiple (e.g., face-amount
F ) times a random amount c(T ), then the expectation of the payment is
the product of F and the expectation of c(T ):

Discrete case: E(Fc(T )) =
∑

t

F c(t) P (T = t)

= F
∑

t

c(t) P (T = t) = F · E(c(T ))

Continuous case: E(Fc(T )) =

∫

F c(t)f(t) dt = F

∫

c(t)f(t) dt = F ·E(c(T ))

(2). If a payment consists of the sum of two separate random payments
c1(T ), c2(T ) (which may occur at different times, taken into account by
treating both terms ck(T ) as present values as of the same time), then the
overall payment has expectation which is the sum of the expectations of the
separate payments:

Discrete case: E(c1(T ) + c2(T )) =
∑

t

(c1(t) + c2(t)) P (T = t)

=
∑

t

c1(t) P (T = t) +
∑

t

c2(t) P (T = t) = E(c1(T )) + E(c2(T ))
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Continuous case: E(c1(T ) + c2(T )) =

∫

(c1(t) + c2(t)) f(t) dt

=

∫

c1(t) f(t) dt +

∫

c2(t) f(t) dt = E(c1(T )) + E(c2(T ))

Thus, if an uncertain payment under an insurance-related contract, based
upon a continuous lifetime variable T with density fT , occurs only if
a ≤ T < b and in that case consists of a payment of a fixed amount F
occurring at a fixed time h, then the expected present value under a fixed
nonrandom interest-rate i with v = (1 + i)−1, becomes by rule (1) above,

E(vh F I[a≤T<b]) = vh F E(I[a≤T<b])

where the indicator-notation I[a≤T<b] denotes a random quantity which is
1 when the condition [a ≤ T < b] is satisfied and is 0 otherwise. Since
an indicator random variable has the two possible outcomes {0, 1} like the
coin-toss variables ǫi above, we conclude that E(I[a≤T<b]) = P (a ≤ T <

b) =
∫ b

a
fT (t) dt, and the expected present value above is

E(vh F I[a≤T<b]) = vh F

∫ b

a

fT (t) dt

3.5 Some Special Integrals

While actuaries ordinarily do not allow themselves to represent real life-
table survival distributions by simple finite-parameter families of theoretical
distributions (for the good reason that they never approximate the real large-
sample life-table data well enough), it is important for the student to be
conversant with several integrals which would arise by substituting some of
the theoretical models into formulas for various net single premiums and
expected lifetimes.

Consider first the Gamma functions and integrals arising in connection
with Gamma survival distributions. The Gamma function Γ(α) is defined
by

Γ(α) =

∫ ∞

0

xα−1 e−x dx , α > 0



84 CHAPTER 3. PROBABILITY & LIFE TABLES

This integral is easily checked to be equal to 1 when α = 1, giving
the total probability for an exponentially distributed random variable, i.e., a
lifetime with constant force-of-mortality 1. For α = 2, the integral is the
expected value of such a unit-exponential random variable, and it is a stan-
dard integration-by-parts exercise to check that it too is 1. More generally,
integration by parts in the Gamma integral with u = xα and dv = e−x dx
immediately yields the famous recursion relation for the Gamma integral,
first derived by Euler, and valid for all α > 0 :

Γ(α + 1) =

∫ ∞

0

xα e−x dx =
(

−xα e−x
)

∣

∣

∣

∞

0
+

∫ ∞

0

α xα−1 e−x dx = α · Γ(α)

This relation, applied inductively, shows that for all positive integers n,

Γ(n + 1) = n · (n − 1) · · · 2 · Γ(1) = n!

The only other simple-to-derive formula explicitly giving values for (non-
integer) values of the Gamma function is Γ( 1

2
) =

√
π, obtained as follows:

Γ(
1

2
) =

∫ ∞

0

x−1/2 e−xdx =

∫ ∞

0

e−z2/2
√

2 dz

Here we have made the integral substitution x = z2/2, x−1/2 dx =
√

2 dz.
The last integral can be given by symmetry as

1√
2

∫ ∞

−∞
e−z2/2 dz =

√
π

where the last equality is equivalent to the fact (proved in most calculus
texts as an exercise in double integration using change of variable to polar
coordinates) that the standard normal distribution

Φ(x) =
1√
2π

∫ x

−∞
e−z2/2 dz (3.20)

is a bona-fide distribution function with limit equal to 1 as x → ∞.

One of the integrals which arises in calculating expected remaining life-
times for Weibull-distributed variables is a Gamma integral, after integration-
by-parts and a change-of-variable. Recall that the Weibull density with pa-
rameters λ, γ is

f(t) = λ γ tγ−1 e−λ tγ , t > 0
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so that S(x) = exp(−λ xγ). The expected remaining life for a Weibull-
distributed life aged x is calculated, via an integration by parts with u =
t − x and dv = f(t)dt = −S ′(t)dt, as

∫ ∞

x

(t − x)
f(t)

S(x)
dt =

1

S(x)

[

− (t − x) e−λtγ
∣

∣

∣

∞

x
+

∫ ∞

x

e−λtγ dt
]

The first term in square brackets evaluates to 0 at the endpoints, and the
second term can be re-expressed via the change-of-variable w = λ tγ , to
give, in the Weibull example,

E(T − x |T ≥ x) = eλxγ 1

γ
λ−1/γ

∫ ∞

λ xγ

w(1/γ)−1 e−w dw

= Γ(
1

γ
) eλ xγ 1

γ
λ−1/γ

(

1 − G1/γ(λ xγ)
)

where we denote by Gα(z) the Gamma distribution function with shape
parameter α,

Gα(z) =
1

Γ(α)

∫ z

0

vα−1 e−v dv

and the integral on the right-hand side is called the incomplete Gamma func-
tion. Values of Gα(z) can be found either in published tables which
are now quite dated, or among the standard functions of many mathe-
matical/statistical computer packages, such as Mathematica, Matlab, or
Splus. One particular case of these integrals, the case α = 1/2 , can be re-
cast in terms of the standard normal distribution function Φ(·). We change
variables by v = y2/2 to obtain for z ≥ 0,

G1/2(z) =
1

Γ(1/2)

∫ z

0

v−1/2 e−v dv =
1√
π

∫

√
2z

0

√
2 e−y2/2 dy

=

√

2

π
·
√

2π · (Φ(
√

2z) − Φ(0)) = 2Φ(
√

2z) − 1

One further expected-lifetime calculation with a common type of distri-
bution gives results which simplify dramatically and become amenable to
numerical calculation. Suppose that the lifetime random variable T is as-
sumed lognormally distributed with parameters m, σ2. Then the expected
remaining lifetime of a life aged x is

E( T − x |T ≥ x ) =
1

S(x)

∫ ∞

x

t
d

dt
Φ(

log(t) − log(m)

σ
) dt − x
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Now change variables by y = (log(t) − log(m))/σ = log(t/m)/σ, so that
t = m eσy, and define in particular

x′ =
log(x) − log(m)

σ

Recalling that Φ′(z) = exp(−z2/2)/
√

2π , we find

E( T − x |T ≥ x ) =
1

1 − Φ(x′)

∫ ∞

x′

m√
2π

eσy−y2/2 dy

The integral simplifies after completing the square σy − y2/2 = σ2/2− (y −
σ)2/2 in the exponent of the integrand and changing variables by z = y−σ.
The result is:

E( T − x |T ≥ x ) =
meσ2/2

1 − Φ(x′)
(1 − Φ(x′ − σ))

3.6 Exercise Set 3

(1). Show that: ∂
∂x tpx = tpx · (µx − µx+t) .

(2). For a certain value of x, it is known that tqx = kt over the time-
interval t ∈ [0, 3], where k is a constant. Express µx+2 as a function of
k.

(3). Suppose that an individual aged 20 has random lifetime Z with
continuous density function

fZ(t) = 0.02 (t − 20) e−(t−20)2/100 , t > 20

(a) If this individual has a contract with your company that you must
pay his heirs $106 · (1.4 − Z/50) on the date of his death between ages 20
and 70, then what is the expected payment ?

(b) If the value of the death-payment described in (a) should properly be
discounted by the factor exp(−0.08(Z − 20)) (i.e. by the effective interest
rate of e.08−1 per year) to calculate the present value of the payment, then
what is the expected present value of the insurance contract ?
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Hint for both parts: After a change of variables, the integral in (a) can be
evaluated in terms of incomplete Gamma integrals

∫∞
c

sα−1 e−s ds, where
the complete Gamma integrals (for c=0) are known to yield the Gamma
function Γ(α) = (α − 1)!, for integer α > 0. Also: Γ(α + 1) = αΓ(α)
for all real > 0, and Γ(1/2) =

√
π .

(4). Suppose that a life-table mortality pattern is this: from ages 20 through
60, twice as many lives die in each 5-year period as in the previous five-year
period. Find the probability that a life aged 20 will die between exact ages 40
and 50. If the force of mortality can be assumed constant over each five-year
age period (20-24, 25-29, etc.), and if you are told that l60/l20 = 0.8, then
find the probability that a life aged 20 will survive at least until exact age
48.0 .

(5). Obtain an expression for µx if lx = k sx wx2

gcx

, where k, s, w, g, c
are positive constants.

(6). Show that:
∫∞

0
lx+t µx+t dt = lx .

(7). A man wishes to accumulate $50, 000 in a fund at the end of 20 years.
If he deposits $1000 in the fund at the end of each of the first 10 years and
$1000+x in the fund at the end of each of the second 10 years, then find x
to the nearest dollar, where the fund earns an effective interest rate of 6% .

(8). Express in terms of annuity-functions a
(m)
N⌉ the present value of an

annuity of $100 per month paid the first year, $200 per month for the second
year, up to $1000 per month the tenth year. Find the numerical value of the
present value if the effective annual interest rate is 7% .

(9). Find upper bounds for the following Binomial probabilities, and com-
pare them with the exact values calculated via computer (e.g., using a spread-
sheet or exact mathematical function such as pbinom in Splus) :

(a). The probability that in Bernoulli trials with success-probability
0.4, the number of successes lies outside the (inclusive) range [364, 446].

(b). The probability that of 1650 lives aged exactly 45, for whom

20p45 = 0.72, no more than 1075 survive to retire at age 65.

(10). If the force of mortality governing a cohort life-table is such that

µt =
2

1 + t
+

2

100 − t
for real t , 0 < t < 100
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then find the number of deaths which will be expected to occur between ages
1 and 4, given that the radix l0 of the life-table is 10, 000.

(11). Find the expected present value at 5% APR of an investment whose
proceeds will with probability 1/2 be a payment of $10, 000 in exactly 5
years, and with the remaining probability 1/2 will be a payment of $20, 000
in exactly 10 years.
Hint: calculate the respective present values V1, V2 of the payments in each
of the two events with probability 0.5, and find the expected value of a discrete
random variable which has values V1 or V2 with probabilities 0.5 each.
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3.7 Worked Examples

Example 1. Assume that a cohort life-table population satisfies l0 = 104

and

dx =







200 for 0 ≤ x ≤ 14
100 for 15 ≤ x ≤ 48
240 for 49 ≤ x ≤ 63

(a) Suppose that an insurer is to pay an amount $100 ·(64−X) (without
regard to interest or present values related to the time-deferral of the payment)
for a newborn in the life-table population, if X denotes the attained integer
age at death. What is the expected amount to be paid ?

(b) Find the expectation requested in (a) if the insurance is purchased for
a life currently aged exactly 10 .

(c) Find the expected present value at 4% interest of a payment of $1000
to be made at the end of the year of death of a life currently aged exactly 20.

The first task is to develop an expression for survival function and density
governing the cohort life-table population. Since the numbers of deaths are
constant over intervals of years, the survival function is piecewise linear, and
the life-distribution is piecewise uniform because the the density is piecewise
constant. Specifically for this example, at integer values y,

ly =







10000 − 200y for 0 ≤ y ≤ 15
7000 − 100(y − 15) for 16 ≤ y ≤ 49
3600 − 240(y − 49) for 50 ≤ y ≤ 64

It follows that the terminal age for this population is ω = 64 for this
population, and S(y) = 1 − 0.02 y for 0 ≤ y ≤ 15, 0.85 − 0.01 y for
15 ≤ y ≤ 49, and 1.536− .024 y for 49 ≤ y ≤ 64. Alternatively, extending
the function S linearly, we have the survival density f(y) = −S ′(y) = 0.02
on [0, 15), = 0.01 on [15, 49), and = 0.024 on [49, 64].

Now the expectation in (a) can be written in terms of the random lifetime
variable with density f as

∫ 15

0

0.02 · 100 · (64 − [y]) dy +

∫ 49

15

0.01 · 100 · (64 − [y]) dy
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+

∫ 64

49

0.024 · 100 · (64 − [y]) dy

The integral has been written as a sum of three integrals over different ranges
because the analytical form of the density f in the expectation-formula
∫

g(y)f(y)dy is different on the three different intervals. In addition, observe
that the integrand (the function g(y) = 100(64− [y]) of the random lifetime
Y whose expectation we are seeking) itself takes a different analytical form
on successive one-year age intervals. Therefore the integral just displayed can
immediately be seen to agree with the summation formula for the expectation
of the function 100(64−X) for the integer-valued random variable X whose
probability mass function is given by

P (X = k) = dk/l0

The formula is

E(g(Y )) = E(100(64 − X)) =
14
∑

k=0

0.02 · 100 · (64 − k) +

48
∑

k=15

0.01 · 100 · (64 − k) +
63
∑

k=49

0.024 · 100 · (64 − k)

Thus the solution to (a) is given (after the change-of-variable j = 64 − k),
by

2.4
15
∑

j=1

j +
49
∑

j=16

j + 2
64
∑

j=50

j

The displayed expressions can be summed either by a calculator program or
by means of the easily-checked formula

∑n
j=1 j = j(j + 1)/2 to give the

numerical answer $3103 .

The method in part (b) is very similar to that in part (a), except that
we are dealing with conditional probabilities of lifetimes given to be at least
10 years long. So the summations now begin with k = 10, or alterna-
tively end with j = 64 − k = 54, and the denominators of the conditional
probabilities P (X = k|X ≥ 10) are l10 = 8000. The expectation in (b)
then becomes

14
∑

k=10

200

8000
·100 · (64−k) +

48
∑

k=15

100

8000
·100 · (64−k) +

63
∑

k=49

240

8000
·100 · (64−k)
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which works out to the numerical value

3.0
15
∑

1

j + 1.25
49
∑

16

j + 2.5
54
∑

50

j = $2391.25

Finally, we find the expectation in (c) as a summation beginning at k =
20 for a function 1000 · (1.04)−X+19 of the random variable X with
conditional probability distribution P (X = k|X ≥ 20) = dk/l20 for k ≥ 20.
(Note that the function 1.04−X+19 is the present value of a payment of 1
at the end of the year of death, because the end of the age- X year for an
individual currently at the 20th birthday is X − 19 years away.) Since
l20 = 6500, the answer to part (c) is

1000
{

48
∑

k=20

100

6500
(1.04)19−k +

63
∑

k=49

240

6500
(1.04)19−k

}

= 1000
( 1

65

1 − 1.04−29

0.04
+

24

650
1.04−29 1 − (1.04)−15

0.04

)

= 392.92

Example 2. Find the change in the expected lifetime of a cohort life-table
population governed by survival function S(x) = 1− (x/ω) for 0 ≤ x ≤ ω
if ω = 80 and

(a) the force of mortality µ(y) is multiplied by 0.9 at all exact ages
y ≥ 40, or

(b) the force of mortality µ(y) is decreased by the constant amount 0.1
at all ages y ≥ 40.

The force of mortality here is

µ(y) = − d

dy
ln(1 − y/80) =

1

80 − y

So multiplying it by 0.9 at ages over 40 changes leaves unaffected the
density of 1/80 for ages less than 40, and for ages y over 40 changes
the density from f(y) = 1/80 to

f ∗(y) = − d

dy

(

S(40) exp(−0.9

∫ y

40

(80 − z)−1 dz)
)
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= − d

dy

(

0.5 e0.9 ln((80−y)/40)
)

= −0.5
d

dy

(

80 − y

40

)0.9

=
0.9

80
(2 − y/40)−0.1

Thus the expected lifetime changes from
∫ 80

0
(y/80) dy = 40 to

∫ 40

0

(y/80) dy +

∫ 80

40

y
0.9

80
(2 − y/40)−0.1 dy

Using the change of variable z = 2 − y/40 in the last integral gives the
expected lifetime = 10 + .45(80/.9 − 40/1.9) = 40.53.

Example 3. Suppose that you have available to you two investment possi-
bilities, into each of which you are being asked to commit $5000. The first
investment is a risk-free bond (or bank savings-account) which returns com-
pound interest of 5% for a 10-year period. The second is a ‘junk bond’
which has probability 0.6 of paying 11% compound interest and returning
your principal after 10 years, probability 0.3 of paying yearly interest at
11% for 5 years and then returning your principal of $5000 at the end
of the 10th year with no further interest payments, and probability 0.1
of paying yearly interest for 3 years at 11% and then defaulting, paying
no more interest and not returning the principal. Suppose further that the
going rate of interest with respect to which present values should properly
be calculated for the next 10 years will either be 4.5% or 7.5%, each
with probability 0.5. Also assume that the events governing the junk bond’s
paying or defaulting are independent of the true interest rate’s being 4.5%
versus 7.5% for the next 10 years. Which investment provides the better
expected return in terms of current (time-0) dollars ?

There are six relevant events, named and displayed along with their prob-
abilities in the following table, corresponding to the possible combinations
of true interest rate (Low versus High) and payment scenarios for the junk
bond (Full payment, Partial interest payments with return of principal, and
Default after 3 years’ interest payments):
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Event Name Description Probability

A1 Low ∩ Full 0.30
A2 Low ∩ Partial 0.15
A3 Low ∩ Default 0.05
A4 High ∩ Full 0.30
A5 High ∩ Partial 0.15
A6 High ∩ Default 0.05

Note that because of independence (first defined in Section 1.1), the prob-
abilities of intersected events are calculated as the products of the separate
probabilities, e.g.,

P (A2) = P (Low) · P (Partial) = (0.5) · (0.30) = 0.15

Now, under each of the events A1, A2, A3, the present value of the first
investment (the risk-free bond) is

5000
{

10
∑

k=1

0.05 (1.045)−k + (1.045)−10
}

= 5197.82

On each of the events A4, A5, A6, the present value of the first investment
is

5000
{

10
∑

k=1

0.05 (1.075)−k + (1.075)−10
}

= 4141.99

Thus, since

P (Low) = P (A1 ∪ A2 ∪ A3) = P (A1) + P (A2) + P (A3) = 0.5

the overall expected present value of the first investment is

0.5 · (5197.82 + 4141.99) = 4669.90

Turning to the second investment (the junk bond), denoting by PV the
present value considered as a random variable, we have

E(PV |A1)/5000 = 0.11
10
∑

k=1

(1.045)−k + (1.045)−10 = 1.51433
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E(PV |A4)/5000 = 0.11
10
∑

k=1

(1.075)−k + (1.075)−10 = 1.24024

E(PV |A2)/5000 = 0.11
5
∑

k=1

(1.045)−k + (1.045)−10 = 1.12683

E(PV |A5)/5000 = 0.11
5
∑

k=1

(1.075)−k + (1.075)−10 = 0.93024

E(PV |A3)/5000 = 0.11
3
∑

k=1

(1.045)−k = 0.302386

E(PV |A6)/5000 = 0.11
3
∑

k=1

(1.075)−k = 0.286058

Therefore, we conclude that the overall expected present value E(PV ) of
the second investment is

6
∑

i=1

E(PV · IAi
) =

6
∑

i=1

E(PV |Ai) P (Ai) = 5000 · (1.16435) = 5821.77

So, although the first-investment is ‘risk-free’, it does not keep up with infla-
tion in the sense that its present value is not even as large as its starting value.
The second investment, risky as it is, nevertheless beats inflation (i.e., the
expected present value of the accumulation after 10 years is greater than the
initial face value of $5000) although with probability P (Default) = 0.10
the investor may be so unfortunate as to emerge (in present value terms)
with only 30% of his initial capital.
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3.8 Useful Formulas from Chapter 3

kpx = px px+1 px+2 · · · px+k−1 , k ≥ 1 integer

p. 63

k/mpx =
k−1
∏

j=0

1/mpx+j/m , k ≥ 1 integer

p. 63

(i) Piecewise Unif.. S(k+t) = tS(k+1)+(1−t)S(k) , k integer , t ∈ [0, 1]

p. 66

(ii) Piecewise Const. µ(y) ln S(k+t) = t ln S(k+1)+(1−t) ln S(k) , k integer

p. 66

(iii) Balducci assump.
1

S(k + t)
=

t

S(k + 1)
+

1 − t

S(k)
, k integer

p. 66

tpk =
S(k) − t(S(k + 1) − S(k))

S(k)
= 1 − t qk under (i)

p. 68

tpk =
S(k + t)

S(x)
=
(

e−µ(k)
)t

= (1 − qk)
t under (ii)

p. 68

tpk =
S(k + t)

S(k + 1)

S(k + 1)

S(k)
=

1 − qk

1 − (1 − t)qk

under (iii)
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p. 68

Binomial(N, p) probability P (X = k) =

(

N

k

)

pk (1 − p)N−k

p. 70

Discrete r.v. Expectation E(c(Z)) =
m
∑

i=1

c(zi) pZ(zi)

p. 79

Γ(α) =

∫ ∞

0

xα−1 e−x dx

p. 84

Φ(x) =
1√
2π

∫ x

−∞
e−z2/2 dz

p. 84



174 CHAPTER 3. PROBABILITY & LIFE TABLES



Bibliography

[1] Bowers, N., Gerber, H., Hickman, J., Jones, D. and Nesbitt, C. Actu-
arial Mathematics Society of Actuaries, Itasca, Ill. 1986

[2] Cox, D. R. and Oakes, D. Analysis of Survival Data, Chapman and
Hall, London 1984

[3] Feller, W. An Introduction to Probability Theory and its Ap-
plications, vol. I, 2nd ed. Wiley, New York, 1957

[4] Feller, W. An Introduction to Probability Theory and its Ap-
plications, vol. II, 2nd ed. Wiley, New York, 1971

[5] Gerber, H. Life Insurance Mathematics, 3rd ed. Springer-Verlag,
New York, 1997

[6] Hogg, R. V. and Tanis, E. Probability and Statistical Inference,
5th ed. Prentice-Hall Simon & Schuster, New York, 1997

[7] Jordan, C. W. Life Contingencies, 2nd ed. Society of Actuaries,
Chicago, 1967

[8] Kalbfleisch, J. and Prentice, R. The Statistical Analysis of Failure
Time Data, Wiley, New York 1980

[9] Kellison, S. The Theory of Interest. Irwin, Homewood, Ill. 1970

[10] Larsen, R. and Marx, M. An Introduction to Probability and its
Applications. Prentice-Hall, Englewood Cliffs, NJ 1985

[11] Larson, H. Introduction to Probability Theory and Statistical
Inference, 3rd ed. Wiley, New York, 1982

175



176 BIBLIOGRAPHY

[12] Lee, E. T. Statistical Models for Survival Data Analysis, Lifetime
Learning, Belmont Calif. 1980

[13] The R Development Core Team, R: a Language and Environment.

[14] Splus, version 7.0. MathSoft Inc., 1988, 1996, 2005

[15] Spiegelman, M. Introduction to Demography, Revised ed. Univ. of
Chicago, Chicago, 1968

[16] Venables, W. and Ripley, B. Modern Applied Statistics with S, 4th
ed. Springer-Verlag, New York, 2002


