12 Simulation Loops in Splus vs. SAS

12.1 Random number generation in SAS.

SAS has a variety of pseudo-random number generation functions which can be invoked during a DATA step (‘pseudo’ because computer software implements deterministic algorithms and so does not produce genuinely random numbers). In SAS, one must supply an initial random number or seed to generate a pseudorandom sequence. (In Splus, recall, one can specify or record the seed using the reserved vector .Random.seed, but one need not unless it is desirable to re-use the same seed later, e.g. for debugging.) In SAS, the seed is a nonzero integer with absolute value less than $2^{31} - 1$. Each call to a random number generating function must use the seed as a function argument, and the seed is updated on each call. The resulting sequence should appear to be a sequence of independent random variables with a pre-assigned distribution. As an example, consider the following SAS program.

```
data random ;
  seed = 4055061 ;
  do i = 1 to 100 ;
    uu = ranuni(seed) ;
    output ;
  end ;
title 'RANDOM UNIFORM NUMBERS' ;
proc univariate data=random plot ;
  var uu ;
```

The SAS function RANUNI returns a random variable with a uniform distribution on $[0, 1]$. Here is the edited output of our little simulation.
RANDOM UNIFORM NUMBERS
Univariate Procedure

Variable=UU

Moments

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1000</td>
<td>Sum Wgts 1000</td>
</tr>
<tr>
<td>Mean</td>
<td>0.492469</td>
<td>Sum 492.4692</td>
</tr>
<tr>
<td>Std Dev</td>
<td>0.288889</td>
<td>Variance 0.083457</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.082374</td>
<td>Kurtosis -1.19532</td>
</tr>
</tbody>
</table>

Quantiles(Def=5)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>Max</td>
<td>0.998822</td>
</tr>
<tr>
<td>99%</td>
<td></td>
<td>0.992526</td>
</tr>
<tr>
<td>75% Q3</td>
<td>0.743291</td>
<td>95% 0.956327</td>
</tr>
<tr>
<td>50% Med</td>
<td>0.484571</td>
<td>90% 0.90731</td>
</tr>
<tr>
<td>25% Q1</td>
<td>0.240905</td>
<td>10% 0.108907</td>
</tr>
<tr>
<td>0% Min</td>
<td>0.00117</td>
<td>5% 0.055209</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1% 0.007447</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td>0.997652</td>
</tr>
<tr>
<td>Q3-Q1</td>
<td>0.502387</td>
<td></td>
</tr>
<tr>
<td>Mode</td>
<td>0.00117</td>
<td></td>
</tr>
</tbody>
</table>

According to the logic of SAS, we can operate using a PROC only on the column(s) of a SAS dataset. So if we want to do a large number of simulation-iterations, e.g. to check the statistical distribution of the studentized average of 40 independent normally or exponentially distributed variables, we should generate the data in 40 columns and operate on the column entries within a data-step, and then process the result in a single PROC UNIVARIATE:

data student ;
 seedz = 314159 ; seedw = 271828 ;
 array zz[40] _TEMPORARY_ ;
 array ww[40] _TEMPORARY_ ;
 do r=1 to 1000 ;
 sum_z = 0 ; sum_zsq = 0 ;
 sum_w = 0 ; sum_wsq = 0 ;
 do i=1 to 40 ;
 zz[i] = rannor(seedz) ;
 ww[i] = ranexp(seedw)-1 ;
 end;
 end;
 do i=1 to 40 ;
 sum_z = sum_z + zz[i] ;
 sum_zsq = sum_zsq + zz[i]*zz[i] ;
 sum_w = sum_w + ww[i] ;
 sum_wsq = sum_wsq + ww[i]*ww[i] ;
 end;
 data student ;
 set student ;
 do r=1 to 1000 ;
 mean_z = sum_z / 40 ;
 std_z = sqrt(sum_zsq / 40 - (mean_z**2)) ;
 mean_w = sum_w / 40 ;
 std_w = sqrt(sum_wsq / 40 - (mean_w**2)) ;
 student_z = (mean_z - 0) / std_z ;
 student_w = (mean_w - 0) / std_w ;
 student_z = student_z + 0.00117 ;
 student_w = student_w + 0.007447 ;
 student_z = student_z - 0.108907 ;
 student_w = student_w - 0.90731 ;
 student_z = student_z - 0.484571 ;
 student_w = student_w - 0.743291 ;
 student_z = student_z - 0.240905 ;
 student_w = student_w - 0.992526 ;
 student_z = student_z - 0.998822 ;
 student_w = student_w - 0.997652 ;
 student_z = student_z - 0.00117 ;
 student_w = student_w - 0.00117 ;
 student_z = student_z - 0.055209 ;
 student_w = student_w - 0.055209 ;
 student_z = student_z - 0.007447 ;
 student_w = student_w - 0.007447 ;
 student_z = student_z - 0.90731 ;
 student_w = student_w - 0.90731 ;
 student_z = student_z - 0.743291 ;
 student_w = student_w - 0.743291 ;
 student_z = student_z - 0.240905 ;
 student_w = student_w - 0.240905 ;
 student_z = student_z - 0.00117 ;
 student_w = student_w - 0.00117 ;
 end;
 end;
 proc univariate ;
 var student_z ;
 output ;
 run ;
sum_z = sum_z + zz[i] ;
sum_zsq = sum_zsq + zz[i]*zz[i] ;
sum_w = sum_w + ww[i] ;
sum_wsq = sum_wsq + ww[i]*ww[i] ;
end ;
t_z = sum_z/sqrt(40)/sqrt((sum_zsq-sum_z*sum_z/40)/39);
t_w = sum_w/sqrt(40)/sqrt((sum_wsq-sum_w*sum_w/40)/39);
output ;
end ;
title 'SIMULATED T FOR NORMAL AND EXPONENTIAL DATA';
proc univariate data=student;
var t_z t_w ;
run;

We know that Student’s t with 39 d.f. has a symmetric, bell-shaped distribution when the underlying sample is normal. This distribution is not too far from Normal, and the Central Limit Theorem says that also for non-normal data, the studentized averages should be roughly normal. But how roughly? We next display our (edited) simulated output.

The theoretical quantiles from 1% through 99% of the t_{39} distribution as displayed on the SAS output are

$$-2.426, -1.685, -1.304, -0.681, 0.000, 0.681, 1.304, 1.685, 2.426$$

and the theoretical mean, variance, skewness, and kurtosis are respectively 0, 1.0541, 0, 0.1905. The simulated values for normal input-data agree quite well with the values in the Student t tables. For the exponential data, we have a somewhat different story. The mean is close to zero because we have centered the exponential data-values, but the distribution of the studentized values is still skewed by comparison with a t_{39} distribution.

SIMULATED T FOR NORMAL AND NONNORMAL DATA

<table>
<thead>
<tr>
<th>Variable= t_z</th>
<th>Moments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1000</td>
</tr>
<tr>
<td>Mean</td>
<td>0.00711654</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>1.05915437</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.00522282</td>
</tr>
</tbody>
</table>
Quantiles (Definition 5)

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>Max 4.49569</td>
</tr>
<tr>
<td>95%</td>
<td>1.73602</td>
</tr>
<tr>
<td>75% Q3</td>
<td>0.72300</td>
</tr>
<tr>
<td>25% Q1</td>
<td>-0.70482</td>
</tr>
<tr>
<td>5%</td>
<td>-1.73805</td>
</tr>
<tr>
<td>0% Min</td>
<td>-3.84347</td>
</tr>
</tbody>
</table>

Variable=t_w

Moments

<table>
<thead>
<tr>
<th>Statistical Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>1000</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.1882496</td>
</tr>
<tr>
<td>Std Deviation</td>
<td>1.1091563</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.6548093</td>
</tr>
</tbody>
</table>

Quantiles(Def=5)

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>Max 3.01113</td>
</tr>
<tr>
<td>95%</td>
<td>1.44562</td>
</tr>
<tr>
<td>75% Q3</td>
<td>0.57106</td>
</tr>
<tr>
<td>25% Q1</td>
<td>-0.86782</td>
</tr>
<tr>
<td>5%</td>
<td>-2.15754</td>
</tr>
<tr>
<td>0% Min</td>
<td>-6.34213</td>
</tr>
</tbody>
</table>

We can display the discrepancies between the histograms in either SAS or Splus. The following code produces a high-quality scaled histogram in SAS.

```sas
proc gchart data=student ;
title "Histograms for LOGBILI" ;
   vbar t_w / LEVELS=30 type=percent;
RUN ;
```

But as we see in the next subsection, it is very convenient in S[plus] both to plot the histogram and an overlaid theoretical function.
12.2 Histograms and Overlaid Densities in Splus

Before proceeding to more complicated simulations in SAS and Splus, let us quickly re-capitulate the last graph through a simulation in Splus.

```r
> motif()
> rmat <- matrix(rnorm(4e4), ncol=40)
nrmt <- apply(rmat,1, function(mrow)
sqrt(40)*mean(mrow)/sqrt(var(mrow)))
> round(quantile(nrmt, c(.01,.05,.1,.25,.5,.75,.9,.95,.99)),3)
1% 5% 10% 25% 50% 75% 90% 95% 99%
-2.558 -1.789 -1.390 -0.727 0.022 0.737 1.367 1.697 2.356
> rmat <- matrix(rexp(4e4)-1, ncol=40)
expt <- apply(rmat,1, function(mrow)
sqrt(40)*mean(mrow)/sqrt(var(mrow)))
round(quantile(expt, c(.01,.05,.1,.25,.5,.75,.9,.95,.99)),3)
1% 5% 10% 25% 50% 75% 90% 95% 99%
-3.648 -2.302 -1.654 -0.781 -0.045 0.622 1.157 1.502 2.019
> par(mfrow=c(2,1))
> hist(nrmt, , nclass=40, prob=T)
> lines(seq(-3,3,.01), dt(seq(-3,3,.01),39), lty=3)
> hist(expt, nclass=40, prob=T)
> lines(seq(-3,3,.01), dt(seq(-3,3,.01),39), lty=3)
```

The histograms produced in the last few command-lines, summarizing the distribution of the simulated output values, are displayed in the following Figure. Note that in order to overlay a theoretical density on a plotted histogram, the option `prob=TRUE` scaling the histogram like a probability density (total area in histogram bars equal to 1) must be chosen.
Figure 1: Scaled relative-frequency histograms of Splus-simulated t Values, for normal (nrmt) and centered-exponential (expt) data, n=40. Simulations each consisted of 1000 iterations. In each plotted histogram, the true t_{39} is overlaid as a dashed line.
12.3 More Elaborate Simulations

The key complication we address here, in comparing simulations in Splus versus SAS, is the very familiar possibility that each iteration of a large simulation may require some data-analysis step or model-fit which we do not want to program from scratch. For purposes of illustration, we simulate the standardized coefficient and associated \(t \)-distribution p-value for slope in a simple linear regression with non-normal (uniform) predictor and errors.

```r
> BigReg <- array(0, dim=c(1000,20,2), dimnames=list(  
      NULL,1:20,c("X","Y")))
BigReg[,,1] <- runif(20000)
BigReg[,,2] <- 0.3 + rnorm(20000)*.4
### NOTE that BigReg[,,2] is now UNrelated to BigReg[,,1]
> unix.time(slopvec <- apply(BigReg,1, function(smat)  
      summary(lm(smat[,2] ~ smat[,1]))$coef[2,3]))
[1] 50.69 0.27 52.00 0.00 0.00
> summary(slopvec)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.618 -0.7371 -0.02168 -0.03306 0.7038 3.765
> pvals <- 1-pt(slopvec,18) ## This is the one-sided p-value for
### the standardized slope-coefficient, which is \( t_{18} \) distributed
> summary (pvals) #### Should be approx. Uniform[0,1]

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000709 0.245281 0.513005 0.508529 0.764719 0.999017
## NB: the two-sided p-values would be 2*(1-pt(abs(slopvec),18))
```

So even this little simulation took nearly a minute of computer time in Splus!! We next do a larger version in order to test the limits of efficiency of Splus looping, to compare with a pure linear-algebra method, and to compare the timing with R.

```r
> unix.time({BigReg <- array(0, dim=c(1000,500,2), dimnames=list(  
      NULL,1:500,c("X","Y")))
BigReg[,,1] <- runif(5e5)
BigReg[,,2] <- 0.3 + rnorm(5e5)*.4
slopvec <- apply(BigReg,1, function(smat)
      summary(lm(smat[,2] ~ smat[,1]))$coef[2,3]))
[1] 50.69 0.27 52.00 0.00 0.00
> summary(slopvec)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-3.618 -0.7371 -0.02168 -0.03306 0.7038 3.765
> pvals <- 1-pt(slopvec,18) ## This is the one-sided p-value for
### the standardized slope-coefficient, which is \( t_{18} \) distributed
> summary (pvals) #### Should be approx. Uniform[0,1]

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000709 0.245281 0.513005 0.508529 0.764719 0.999017
## NB: the two-sided p-values would be 2*(1-pt(abs(slopvec),18))
```
summary(lm(smat[,2] ~ smat[,1]))$coef[2,3])
[1] 70.64 0.91 76.00 0.00 0.00
Only 50% longer with batch-size 500 than with batch-size 20!

> summary(slopvec)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.936 -0.6481 0.04752 0.03481 0.727 3.616

We have already mentioned that the method of ‘parallel’ calculation using `apply` is hardly better than directly coding a for-loop. But here, we can compare with the much more efficient method using linear algebra in a truly parallel way.

> unix.time(
 ### BigReg <- array(0, dim=c(1000,500,2))
 ### BigReg[,,1] <- runif(5e5)
 ### BigReg[,,2] <- 0.3 + rnorm(5e5)**.4
cnstvc <- rep(.002,500)
Xsum <- c(BigReg[,,1] **%** cnstvc)
XtX <- matrix(c(rep(1,1000), Xsum, Xsum, BigReg[,,1]**2 **%** cnstvc), ncol=4) ## scaled down by factor n=500
Ysum <- c(BigReg[,,2] **%** cnstvc)
XYsum <- c((BigReg[,,2]*BigReg[,,1]) **%** cnstvc)
Yvar <- (BigReg[,,2]**2 **%** cnstvc - Ysum**2)*(500/499)
Xvar <- (XtX[,4]-Xsum**2)*(500/499)
XYcor <- (500/499)*(XYsum-Xsum*Ysum)/sqrt(Yvar*Xvar)
sigsq <- Yvar*(1-XYcor**2)
dtvec <- Xvar*(499/500) ## scaled down by factor 500
slopvec2 <- c(XYsum - Ysum * Xsum)/sqrt(sigsq*Xvar/500)
)

[1] 4.350006 0.200000 4.000000 0.000000 0.000000

Note the incredible difference in speed: the factor is > 15.

When I ran exactly the same programs in R (on my same Sun-terminal), the last (linear-algebra) method took 6.07 seconds machine-time. But the first method (calculating `slopvec` using `apply`) took 104 seconds!! So to a first approximation, looping in R is no better than in Splus. Recall that although the syntax of the two languages is the same, their internal workings are programmed differently.
Now we turn to SAS to attempt to reproduce the last simulation:

```sas
data sampreg (keep= xx yy);
  seed = 4055067 ;
  do i=1 to 30 ;
    xx = ranuni(seed) ;
    yy = -1.2 + 0.6*xx + 0.5*rannor(seed);
    output ;
  end ;
PROC REG outest=regests;
  model yy = xx;
run;
The data set WORK.REGESTS has 1 observations and 7 variables.

Obs _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept xx yy
1 MODEL1 PARMS yy 0.48755 -1.42935 0.78730 -1

The value for yy is just an indication that it is the dependent variable. The list of output statistic values can be very much expanded: for example, by issuing the TABLEOUT option, we get standard errors of estimates, $t$ values, etc. But now the output file REGESTS would have 6 records instead of one, respectively with the TYPE variable equal to PARMS, STDERR, T, PVALUE, L95B, U95B.

The next step is to try to produce an output file along the same lines to contain estimated quantities from each of a number of simulation iterations.

```sas
data sampreg (keep = xx yy iter);
 seed = 401067 ;
 do iter = 1 to 100;
 do i=1 to 30 ;
 xx = ranuni(seed) ;
 yy = -1.2 + 0.6*xx + 0.5*rannor(seed);
 output ;
 end ;
 end;
run;
```
PROC SORT;
  by iter;
PROC REG outest=regests2 TABLEOUT NOPRINT;
  model yy = xx;
  BY iter;
run;

Note that the SAMPRREG dataset used in this computation now had 3000 record-lines. The NOPRINT option is needed to generate the OUTEST file without a lot of needless output printed to the OUTPUT window. Messages about analysis by BY-group were issued for all 100 iterations; the REG step now took 3.23 seconds of real time and 0.34 seconds of CPU time, and the output data file REGEST2 has 600 records and 8 variables. (The variables are the seven from before plus ITER (because the is the BY-group variable), and we have 6 records of different TYPE for each BY-group value ITER= 1, . . . , 100. It remains to re-process the last data-file into a summary. First we need a data-step which grabs just the required fields (xx in records of TYPE T and TYPE PVALUE).

data slopvals (keep = Tval Pval iter);
  RETAIN Tval;
  set REGESTS2 (keep = iter _TYPE_ xx);
  if _TYPE_ EQ "T" then Tval = xx;
  if _TYPE_ EQ "PVALUE" then do;
    Pval = xx; output; end;
run;
PROC PRINT;
  where iter < 3;
run;
...

<table>
<thead>
<tr>
<th>Obs</th>
<th>Tval</th>
<th>iter</th>
<th>Pval</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.77870</td>
<td>1</td>
<td>0.086149</td>
</tr>
<tr>
<td>2</td>
<td>2.80599</td>
<td>2</td>
<td>0.009024</td>
</tr>
</tbody>
</table>

The RETAIN statement is needed here in order that SAS not re-initialize Tval to 'missing' each time it reads a new line.
We conclude this subsection by doing a timing run in SAS for the same (1000 iterations of simple linear regression with 20 observations) simulation which was done in 6 seconds in R, and 4.5 seconds in Splus3.4 using apply and lm.

data sampreg (keep = xx yy iter);
  seed = 401067;
  do iter = 1 to 1000;
    do i=1 to 20;
      xx = ranuni(seed);
      yy = -1.2 + 0.5*rannor(seed);
      output;
    end;
  end;
run;
PROC SORT;
  by iter;
PROC REG outest=regests3 TABLEOUT NOPRINT;
  model yy = xx;
  BY iter;
data slopvals (keep = Tval Pval iter);
  RETAIN Tval;
  set REGESTS3 (keep = iter _TYPE_ xx);
  if _TYPE_ EQ "T" then Tval = xx;
  if _TYPE_ EQ "PVALUE" then do;
    Pval = xx; output; end;
PROC UNIVARIATE;
  Var Tval Pval;
run;

The total CPU and real times spent in this simulation run are respectively 0.21 and 24.74 seconds, on a detective-cluster machine. When I tried to run the same simulation in SAS with 500 observations in each simple linear regression, I ran out of SAS resources. When I tried to do the same thing in 10 separate chunks: the average time was 1.86 seconds for each chunk, or around 18.6 seconds in all. So the computations do not take particularly long!