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#7.1. Here the dominating measure µ on N = {0, 1, 2, . . .} is counting measure.
For each x ≥ 0, the function

s(x, θ) ≡
√

p(x, θ) = exp((x log θ − θ)/2)/
√

x!

is obviously continuously differentiable on θ ∈ (0,∞). Then ṗθ/pθ = x/θ − 1,
and (using the change of index k = x− 1 as needed)
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θ
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which is well-defined and continuous.

#7.5. Now Xi are iid N (θ, 1) which implies
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Comparing to the expression in Theorem 7.2, the term oPθ
(1) is explicitly

(hn − h)
√

n(X̄ − θ) − 1
2
(h2

n − h2) = (hn − h)
(√

n(X̄ − θ)− hn + h

2

)

#7.6. Now f(x, θ) = e−|x−θ|/2, and we cannot apply Lemma 7.6 because the
condition there does not hold for every x. But with gθ(x) defined as the a.e.
derivative of log f(x, θ), that is, gθ(x) = sgn(x − θ), we find (using the change
of variable w = −v on the negative half-line)∫ [√1

2
e−|x−θ−h| − (1 +

h

2
sgn(x− θ))

√
1
2
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]2

dx = (∗)
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2
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2

)2 e−w

2
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The first of these integrals is split into two terms, an integral on [0, h) and
another on (h,∞), the first equal to∫ h

0

(ev−h/2−1−h

2
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= O
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and the second equal to∫ ∞

h
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2
= e−h (eh/2 − 1− h/2)2 = O(h4)
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The second integral on the right-hand side of (*) is∫ ∞

0

(
e−h/2 − 1 + h/2

)2

e−w dw

2
=

1
2

(e−h/2 − 1 + h/2)2 = O(h4)

Thus we have shown that (*) is o(h2) as h → 0+, completing the verification of
quadratic mean differentiability.

#7.10. Here as elsewhere we try to define gθ(x) as the a.e.(x) gradient of
the log density. It is not hard to see that when x approaches ξ from above,
the integrands (including terms from the gradient gθ(x) (or from its square)
increase as a power (x − ξ)−k with k no larger than 4, while the exponential
term exp(− 1

2σ2 (log(x − ξ) − µ)2) decreases faster than any power of x − ξ.
Thus convergence of integrals is no problem. It is also not hard to see the
quadratic mean differentiability with respect to the µ, σ2 variables (by bounding
the Taylor series remainders in the density), so we show it only for the ξ variable.
The expression to be proved o(h2) is∫ {( 1

x− ξ − h
I[x>ξ+h] exp(− 1

2σ2
(log(x− ξ − h)− µ)2

)1/2

−
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σ2
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( 1

x− ξ
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2σ2
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)1/2}2

dx

Without loss of generality, we consider it only for h > 0; perform the change of
variable y = log(x−ξ); and split the resulting integral into one on (−∞, C

√
log h)

and one on (C
√

log h,∞) for a large constant C to be specified. The first of
these three integrals is easily seen to be

O
( ∫ C

√
log h

−∞
exp(− (y − µ)2

2σ2
−3y) dy

)
= O((log h)−2 e−(C

√
log h−µ)2/(2σ2)) = o(h2)

as long as C > 10σ2, and the integrand in the second of these integrals involves
Taylor series terms which can readily be bounded o(h2) multiplied by a normal
density.

This problem required some very detailed analysis for a fully rigorous proof,
but the result is that quadratic mean differentiability does hold for the 3-
parameter lognormal.

#8.3. For fixed x, the usual Central Limit Theorem implies for a general
distribution F that

√
n (Fn(x)− F (x)) D−→ N (0, F (x)(1− F (x)) as n →∞

For the specific case of Xi ∼ N (θ, 1), we have F (x) = Φ(x− θ). In this case,
the delta method immediately implies (with φ(·) denoting the standard normal
density)

√
n

(
Φ(x− X̄) − Φ(x− θ)

)
D−→ N (0, φ2(x− θ)) as n →∞
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As a result, the Asymptotic Relative Efficiency of the estimators is

ARE(Fn(x), Φ(x− X̄)) = φ2(x− θ)/(Φ(x− θ)(1− Φ(x− θ)))

Although it is analytically not easy to bound, a graph of the very smooth
function G(z) = φ(z)/(Φ(z)(1−Φ(z)) shows it to be even and unimodal (a fact
which can be analytically proved without much trouble), peaked in the middle
with a maximum value of .6366 at 0. So if one wants to estimate a distribution
function value not too far from the mean, the empirical d.f. does so with a
loss of effciency equivalent to throwing away about 1/3 of the data in a normal-
distribution setting, although the situation becomes much worse far from the
mean.

3


