STAT 770 Dec. 7 Lecture 27
 Decision Tree Methods vs Logistic Regression

Reading and Topics for this lecture: rpart and randomForest software descriptions (posted to special Decision Tree module in ELMS), plus the R Scripts for this class: and IntXPred.RLog and RandomForests.RLog.
(1) General discussion of Logistic Regression as Classification
(2) Motivation for Decision Trees as search for Interactions
(3) High-level discussion of CART and rpart
(4) Script case-studies, of rpart and randomForest

Logistic Regression as a Classification Method

- With binary responses Y_{i} and predictors \underline{X}_{i} : logistic regression provides predictors $I_{\left[X_{i}^{t r} \hat{\beta} \geq c\right]}$ for $Y_{i}=1$.
- Effective classification rules may be complicated, depending on (higher-order) interactions or nonlinear recodes of the coordinates of \underline{X}_{i}.
- Stepwise model-selection strategies offer screening approach for model terms: but how could one find important higherorder interactions? Search among many predictors may fail for combinatorial reasons.
- Decision trees look directly for successive branchings, may arrive at combinations of variables without searching among all such combinations.

CART and Recursive Partitioning

Sources:

Classification and Regression Trees, L. Breiman et al. (1980)
H. Zhang \& B. Singer (2010) Recursive Partitioning and Applications, Springer.

Similar R packages rpart and tree, "long introduction" to rpart by Therneau and Atkinson.

All these tree-based methods consist of two parts: successive (greedy) search for 'splitting' of nodes to decrease an index as much as possible. Tree is "grown" until a stopping criterion on \# levels or size of nodes is reached, then "pruned".

Recursive (Binary) Partitioning, cont'd

stage K of tree: set U of units partitioned into nodes $\left\{A_{j}\right\}_{j=1}^{K}$
Split node A_{j} into $A_{j, 1}, A_{j, 2}$, where $A_{j, 1}=\left\{i \in A_{j}: X_{i, k_{j}} \leq a_{k_{j}}\right\}$ or $\left\{i \in A_{j}: X_{i, k_{j}} \in C_{k j}\right\}$ (for factor-column $X_{i, k_{j}}$)

Splitting index - choose node, split to maximize change
$\Delta I=p\left(A_{j}\right) I\left(r\left(A_{j}\right)\right)-p\left(A_{j, 1}\right) I\left(r\left(A_{j, 1}\right)\right)-p\left(A_{j, 2}\right) I\left(r\left(A_{j, 2}\right)\right)$
where $r(B)=|B \cap[Y=1]| /|B|$, and $p(B)=|B| /|U|$
$I(p)=$ concave fcn, e.g. $p(1-p)$ or $-p \log p-(1-p) \log (1-p)$
Pruning - minimize misclassification rate penalized by $\alpha \cdot \#$ nodes

Random Forest Idea

- Grow many trees, on randomly sampled subsets of data, with splits at each stage based on a small random sample of \underline{X} coordinates
- aggregate over many trees by averaging predictions from mini-tree prediction rules.
- look in Scripts for examples

