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Boosting and Additive Trees

10.1 Boosting Methods

Boosting is one of the most powerful learning ideas introduced in the last
twenty years. It was originally designed for classification problems, but as
will be seen in this chapter, it can profitably be extended to regression
as well. The motivation for boosting was a procedure that combines the
outputs of many “weak” classifiers to produce a powerful “committee.”
From this perspective boosting bears a resemblance to bagging and other
committee-based approaches (Section 8.8). However we shall see that the
connection is at best superficial and that boosting is fundamentally differ-
ent.
We begin by describing the most popular boosting algorithm due to

Freund and Schapire (1997) called “AdaBoost.M1.” Consider a two-class
problem, with the output variable coded as Y ∈ {−1, 1}. Given a vector of
predictor variables X, a classifier G(X) produces a prediction taking one
of the two values {−1, 1}. The error rate on the training sample is

err =
1

N

N∑

i=1

I(yi �= G(xi)),

and the expected error rate on future predictions is EXY I(Y �= G(X)).
A weak classifier is one whose error rate is only slightly better than

random guessing. The purpose of boosting is to sequentially apply the
weak classification algorithm to repeatedly modified versions of the data,
thereby producing a sequence of weak classifiers Gm(x),m = 1, 2, . . . ,M .
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FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted ver-
sions of the dataset, and then combined to produce a final prediction.

The predictions from all of them are then combined through a weighted
majority vote to produce the final prediction:

G(x) = sign

(
M∑

m=1

αmGm(x)

)
. (10.1)

Here α1, α2, . . . , αM are computed by the boosting algorithm, and weight
the contribution of each respective Gm(x). Their effect is to give higher
influence to the more accurate classifiers in the sequence. Figure 10.1 shows
a schematic of the AdaBoost procedure.
The data modifications at each boosting step consist of applying weights

w1, w2, . . . , wN to each of the training observations (xi, yi), i = 1, 2, . . . , N .
Initially all of the weights are set to wi = 1/N , so that the first step simply
trains the classifier on the data in the usual manner. For each successive
iteration m = 2, 3, . . . ,M the observation weights are individually modi-
fied and the classification algorithm is reapplied to the weighted observa-
tions. At step m, those observations that were misclassified by the classifier
Gm−1(x) induced at the previous step have their weights increased, whereas
the weights are decreased for those that were classified correctly. Thus as
iterations proceed, observations that are difficult to classify correctly re-
ceive ever-increasing influence. Each successive classifier is thereby forced
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Algorithm 10.1 AdaBoost.M1.

1. Initialize the observation weights wi = 1/N, i = 1, 2, . . . , N .

2. For m = 1 to M :

(a) Fit a classifier Gm(x) to the training data using weights wi.

(b) Compute

errm =

∑N
i=1 wiI(yi �= Gm(xi))∑N

i=1 wi

.

(c) Compute αm = log((1− errm)/errm).

(d) Set wi ← wi · exp[αm · I(yi �= Gm(xi))], i = 1, 2, . . . , N .

3. Output G(x) = sign
[∑M

m=1 αmGm(x)
]
.

to concentrate on those training observations that are missed by previous
ones in the sequence.
Algorithm 10.1 shows the details of the AdaBoost.M1 algorithm. The

current classifier Gm(x) is induced on the weighted observations at line 2a.
The resulting weighted error rate is computed at line 2b. Line 2c calculates
the weight αm given to Gm(x) in producing the final classifier G(x) (line
3). The individual weights of each of the observations are updated for the
next iteration at line 2d. Observations misclassified by Gm(x) have their
weights scaled by a factor exp(αm), increasing their relative influence for
inducing the next classifier Gm+1(x) in the sequence.

The AdaBoost.M1 algorithm is known as “Discrete AdaBoost” in Fried-
man et al. (2000), because the base classifier Gm(x) returns a discrete class
label. If the base classifier instead returns a real-valued prediction (e.g.,
a probability mapped to the interval [−1, 1]), AdaBoost can be modified
appropriately (see “Real AdaBoost” in Friedman et al. (2000)).
The power of AdaBoost to dramatically increase the performance of even

a very weak classifier is illustrated in Figure 10.2. The features X1, . . . , X10

are standard independent Gaussian, and the deterministic target Y is de-
fined by

Y =

{
1 if

∑10
j=1 X

2
j > χ2

10(0.5),

−1 otherwise.
(10.2)

Here χ2
10(0.5) = 9.34 is the median of a chi-squared random variable with

10 degrees of freedom (sum of squares of 10 standard Gaussians). There are
2000 training cases, with approximately 1000 cases in each class, and 10,000
test observations. Here the weak classifier is just a “stump”: a two terminal-
node classification tree. Applying this classifier alone to the training data
set yields a very poor test set error rate of 45.8%, compared to 50% for



340 10. Boosting and Additive Trees

0 100 200 300 400

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Boosting Iterations

T
e
s
t 
E

rr
o
r

Single Stump

244 Node Tree

FIGURE 10.2. Simulated data (10.2): test error rate for boosting with stumps,
as a function of the number of iterations. Also shown are the test error rate for
a single stump, and a 244-node classification tree.

random guessing. However, as boosting iterations proceed the error rate
steadily decreases, reaching 5.8% after 400 iterations. Thus, boosting this
simple very weak classifier reduces its prediction error rate by almost a
factor of four. It also outperforms a single large classification tree (error
rate 24.7%). Since its introduction, much has been written to explain the
success of AdaBoost in producing accurate classifiers. Most of this work
has centered on using classification trees as the “base learner” G(x), where
improvements are often most dramatic. In fact, Breiman (NIPS Workshop,
1996) referred to AdaBoost with trees as the “best off-the-shelf classifier in
the world” (see also Breiman (1998)). This is especially the case for data-
mining applications, as discussed more fully in Section 10.7 later in this
chapter.

10.1.1 Outline of This Chapter

Here is an outline of the developments in this chapter:

• We show that AdaBoost fits an additive model in a base learner,
optimizing a novel exponential loss function. This loss function is
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very similar to the (negative) binomial log-likelihood (Sections 10.2–
10.4).

• The population minimizer of the exponential loss function is shown
to be the log-odds of the class probabilities (Section 10.5).

• We describe loss functions for regression and classification that are
more robust than squared error or exponential loss (Section 10.6).

• It is argued that decision trees are an ideal base learner for data
mining applications of boosting (Sections 10.7 and 10.9).

• We develop a class of gradient boosted models (GBMs), for boosting
trees with any loss function (Section 10.10).

• The importance of “slow learning” is emphasized, and implemented
by shrinkage of each new term that enters the model (Section 10.12),
as well as randomization (Section 10.12.2).

• Tools for interpretation of the fitted model are described (Section 10.13).

10.2 Boosting Fits an Additive Model

The success of boosting is really not very mysterious. The key lies in ex-
pression (10.1). Boosting is a way of fitting an additive expansion in a set
of elementary “basis” functions. Here the basis functions are the individual
classifiers Gm(x) ∈ {−1, 1}. More generally, basis function expansions take
the form

f(x) =

M∑

m=1

βmb(x; γm), (10.3)

where βm,m = 1, 2, . . . ,M are the expansion coefficients, and b(x; γ) ∈ IR
are usually simple functions of the multivariate argument x, characterized
by a set of parameters γ. We discuss basis expansions in some detail in
Chapter 5.
Additive expansions like this are at the heart of many of the learning

techniques covered in this book:

• In single-hidden-layer neural networks (Chapter 11), b(x; γ) = σ(γ0+
γT
1 x), where σ(t) = 1/(1+e−t) is the sigmoid function, and γ param-

eterizes a linear combination of the input variables.

• In signal processing, wavelets (Section 5.9.1) are a popular choice with
γ parameterizing the location and scale shifts of a “mother” wavelet.

• Multivariate adaptive regression splines (Section 9.4) uses truncated-
power spline basis functions where γ parameterizes the variables and
values for the knots.
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Algorithm 10.2 Forward Stagewise Additive Modeling.

1. Initialize f0(x) = 0.

2. For m = 1 to M :

(a) Compute

(βm, γm) = argmin
β,γ

N∑

i=1

L(yi, fm−1(xi) + βb(xi; γ)).

(b) Set fm(x) = fm−1(x) + βmb(x; γm).

• For trees, γ parameterizes the split variables and split points at the
internal nodes, and the predictions at the terminal nodes.

Typically these models are fit by minimizing a loss function averaged
over the training data, such as the squared-error or a likelihood-based loss
function,

min
{βm,γm}M

1

N∑

i=1

L

(
yi,

M∑

m=1

βmb(xi; γm)

)
. (10.4)

For many loss functions L(y, f(x)) and/or basis functions b(x; γ), this re-
quires computationally intensive numerical optimization techniques. How-
ever, a simple alternative often can be found when it is feasible to rapidly
solve the subproblem of fitting just a single basis function,

min
β,γ

N∑

i=1

L (yi, βb(xi; γ)) . (10.5)

10.3 Forward Stagewise Additive Modeling

Forward stagewise modeling approximates the solution to (10.4) by sequen-
tially adding new basis functions to the expansion without adjusting the
parameters and coefficients of those that have already been added. This is
outlined in Algorithm 10.2. At each iteration m, one solves for the optimal
basis function b(x; γm) and corresponding coefficient βm to add to the cur-
rent expansion fm−1(x). This produces fm(x), and the process is repeated.
Previously added terms are not modified.
For squared-error loss

L(y, f(x)) = (y − f(x))2, (10.6)
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one has

L(yi, fm−1(xi) + βb(xi; γ)) = (yi − fm−1(xi)− βb(xi; γ))
2

= (rim − βb(xi; γ))
2, (10.7)

where rim = yi − fm−1(xi) is simply the residual of the current model
on the ith observation. Thus, for squared-error loss, the term βmb(x; γm)
that best fits the current residuals is added to the expansion at each step.
This idea is the basis for “least squares” regression boosting discussed in
Section 10.10.2. However, as we show near the end of the next section,
squared-error loss is generally not a good choice for classification; hence
the need to consider other loss criteria.

10.4 Exponential Loss and AdaBoost

We now show that AdaBoost.M1 (Algorithm 10.1) is equivalent to forward
stagewise additive modeling (Algorithm 10.2) using the loss function

L(y, f(x)) = exp(−y f(x)). (10.8)

The appropriateness of this criterion is addressed in the next section.
For AdaBoost the basis functions are the individual classifiers Gm(x) ∈

{−1, 1}. Using the exponential loss function, one must solve

(βm, Gm) = argmin
β,G

N∑

i=1

exp[−yi(fm−1(xi) + β G(xi))]

for the classifier Gm and corresponding coefficient βm to be added at each
step. This can be expressed as

(βm, Gm) = argmin
β,G

N∑

i=1

w
(m)
i exp(−β yi G(xi)) (10.9)

with w
(m)
i = exp(−yi fm−1(xi)). Since each w

(m)
i depends neither on β

nor G(x), it can be regarded as a weight that is applied to each observa-
tion. This weight depends on fm−1(xi), and so the individual weight values
change with each iteration m.

The solution to (10.9) can be obtained in two steps. First, for any value
of β > 0, the solution to (10.9) for Gm(x) is

Gm = argmin
G

N∑

i=1

w
(m)
i I(yi �= G(xi)), (10.10)
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which is the classifier that minimizes the weighted error rate in predicting
y. This can be easily seen by expressing the criterion in (10.9) as

e−β ·
∑

yi=G(xi)

w
(m)
i + eβ ·

∑

yi �=G(xi)

w
(m)
i ,

which in turn can be written as

(
eβ − e−β

)
·

N∑

i=1

w
(m)
i I(yi �= G(xi)) + e−β ·

N∑

i=1

w
(m)
i . (10.11)

Plugging this Gm into (10.9) and solving for β one obtains

βm =
1

2
log

1− errm
errm

, (10.12)

where errm is the minimized weighted error rate

errm =

∑N
i=1 w

(m)
i I(yi �= Gm(xi))∑N

i=1 w
(m)
i

. (10.13)

The approximation is then updated

fm(x) = fm−1(x) + βmGm(x),

which causes the weights for the next iteration to be

w
(m+1)
i = w

(m)
i · e−βmyiGm(xi). (10.14)

Using the fact that −yiGm(xi) = 2 · I(yi �= Gm(xi))− 1, (10.14) becomes

w
(m+1)
i = w

(m)
i · eαmI(yi �=Gm(xi)) · e−βm , (10.15)

where αm = 2βm is the quantity defined at line 2(c) of AdaBoost.M1
(Algorithm 10.1). The factor e−βm in (10.15) multiplies all weights by the
same value, so it has no effect. Thus (10.15) is equivalent to line 2(d) of
Algorithm 10.1.
One can view line 2(a) of the Adaboost.M1 algorithm as a method for

approximately solving the minimization in (10.11) and hence (10.10). Hence
we conclude that AdaBoost.M1 minimizes the exponential loss criterion
(10.8) via a forward-stagewise additive modeling approach.
Figure 10.3 shows the training-set misclassification error rate and aver-

age exponential loss for the simulated data problem (10.2) of Figure 10.2.
The training-set misclassification error decreases to zero at around 250 it-
erations (and remains there), but the exponential loss keeps decreasing.
Notice also in Figure 10.2 that the test-set misclassification error continues
to improve after iteration 250. Clearly Adaboost is not optimizing training-
set misclassification error; the exponential loss is more sensitive to changes
in the estimated class probabilities.
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FIGURE 10.3. Simulated data, boosting with stumps: misclassification error
rate on the training set, and average exponential loss: (1/N)

∑N

i=1 exp(−yif(xi)).
After about 250 iterations, the misclassification error is zero, while the exponential
loss continues to decrease.

10.5 Why Exponential Loss?

The AdaBoost.M1 algorithm was originally motivated from a very differ-
ent perspective than presented in the previous section. Its equivalence to
forward stagewise additive modeling based on exponential loss was only
discovered five years after its inception. By studying the properties of the
exponential loss criterion, one can gain insight into the procedure and dis-
cover ways it might be improved.
The principal attraction of exponential loss in the context of additive

modeling is computational; it leads to the simple modular reweighting Ad-
aBoost algorithm. However, it is of interest to inquire about its statistical
properties. What does it estimate and how well is it being estimated? The
first question is answered by seeking its population minimizer.
It is easy to show (Friedman et al., 2000) that

f∗(x) = argmin
f(x)

EY |x(e
−Y f(x)) =

1

2
log

Pr(Y = 1|x)
Pr(Y = −1|x) , (10.16)
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or equivalently

Pr(Y = 1|x) = 1

1 + e−2f∗(x)
.

Thus, the additive expansion produced by AdaBoost is estimating one-
half the log-odds of P (Y = 1|x). This justifies using its sign as the classifi-
cation rule in (10.1).
Another loss criterion with the same population minimizer is the bi-

nomial negative log-likelihood or deviance (also known as cross-entropy),
interpreting f as the logit transform. Let

p(x) = Pr(Y = 1 |x) = ef(x)

e−f(x) + ef(x)
=

1

1 + e−2f(x)
(10.17)

and define Y ′ = (Y + 1)/2 ∈ {0, 1}. Then the binomial log-likelihood loss
function is

l(Y, p(x)) = Y ′ log p(x) + (1− Y ′) log(1− p(x)),

or equivalently the deviance is

−l(Y, f(x)) = log
(
1 + e−2Y f(x)

)
. (10.18)

Since the population maximizer of log-likelihood is at the true probabilities
p(x) = Pr(Y = 1 |x), we see from (10.17) that the population minimizers of
the deviance EY |x[−l(Y, f(x))] and EY |x[e

−Y f(x)] are the same. Thus, using
either criterion leads to the same solution at the population level. Note that
e−Y f itself is not a proper log-likelihood, since it is not the logarithm of
any probability mass function for a binary random variable Y ∈ {−1, 1}.

10.6 Loss Functions and Robustness

In this section we examine the different loss functions for classification and
regression more closely, and characterize them in terms of their robustness
to extreme data.

Robust Loss Functions for Classification

Although both the exponential (10.8) and binomial deviance (10.18) yield
the same solution when applied to the population joint distribution, the
same is not true for finite data sets. Both criteria are monotone decreasing
functions of the “margin” yf(x). In classification (with a −1/1 response)
the margin plays a role analogous to the residuals y−f(x) in regression. The
classification rule G(x) = sign[f(x)] implies that observations with positive
margin yif(xi) > 0 are classified correctly whereas those with negative
margin yif(xi) < 0 are misclassified. The decision boundary is defined by
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