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Factors are objects in R with contrasts as attributes that specify the coding of dummy columns in the
design matrices of linear and generalized-linear models. They rise particularly in the context of loglinear
models because of the difference between the default ‘side-conditions’ in the loglinear model fitting function
loglin versus the generalized-linear fitting function glm that can be used to fit the same models.

The factors themselves are simple: they are vectors of character entries, drawn from a set of K ordered
labels called levels, coded numerically as 1:K. Thus, we could define a factor to specify a sequence of 8
color-labels c("blue","green","orange","green","red","blue","orange","orange"), as

> colfac = factor(c("blue","green","orange","green","red","blue","orange","orange"))

with structure given by

> levels(colfac)

[1] "blue" "green" "orange" "red"

> as.numeric(colfac)

[1] 1 2 3 2 4 1 3 3

So the idea is that the numeric values are pointers to the ordered labels in levels.

Linear and categorical regressions can be fitted in R using factors as explanatory variables, e.g.

> yval = rnorm(8, 1 + 2*(0:7), 1.5)

> lmfit = lm(yval ~ colfac)

lmfit

Call:

lm(formula = yval ~ colfac)

Coefficients:

(Intercept) colfacgreen colfacorange colfacred

6.2698 -0.1001 4.1006 2.4058

What does this mean ? The levels (other than the first, which is by default associated with the intercept)
are labels for the vector of color-category indicators, and these indicator vectors are ‘dummy’ predictor
variables for the regression, with coefficients then fitted (in this example) by least squares. The convention
that the intercept is the coefficient of the first category (“blue”) and the other fitted coefficients are the
least-squares coefficients for the dummy predictors is encoded in the contrasts associated with the factor:

contrasts(colfac)

green orange red

blue 0 0 0

green 1 0 0

orange 0 1 0

red 0 0 1

and the design matrix for the least-squares fit is model.matrix(lmfit), identical to
cbind(1, contrasts(colfac)[as.numeric(colfac),], and the estimates equivalently expressed as

> as.numeric(lm(yval ~ model.matrix(lmfit) - 1)$coef)

[1] 6.2698281 -0.1001303 4.1005673 2.4058138
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1 Linear-Model Coding of Main Effects

We continue by explaining the relationship between factors, contrasts, and side-conditions, first for parame-
terization of linear models in terms of group means. Consider the group means

µk = E(yi | faci = levels(fac)[k]) for k = 1, . . . ,K, in linear model y ∼ fac

where fac is a K-level factor and observations yi and factor values faci are indexed by individuals i. The
default ‘treatment’ contrasts encode the Intercept as the coefficient β0 of the 1 vector and the coefficients
βk, k = 2, . . . , βK as multiplying the respective indicator dummy-vectors I[as.numeric(faci) ==k] for
k = 2, . . . ,K with β1 = 0 and with β0 = µ1, βk − β0 = µk for k ≥ 2. Here β = (β0, β1, . . . , βK) is a
redundant parameter vector with the ‘side-condition’ β1 = 0; in the example K = 4. The relation between
the coefficients and group means in this case can be seen, with Group.1 = fac and x =µ, in

> cbind.data.frame(aggregate(yval, by=list(colfac), mean),beta=lmfit$coef)

Group.1 x beta

(Intercept) blue 6.269828 6.2698281

colfacgreen green 6.169698 -0.1001303

colfacorange orange 10.370395 4.1005673

colfacred red 8.675642 2.4058138

Next consider the redundantK+1 dimensional parameter-vector γ with ‘sum’ side-condition
∑K

k=1 γk = 0

which implies that the parameter γ1 is determined from the later coordinates by β1 = −
∑K

k=1 βk. The model-
matrix that implements the model y ∼ fac can still be written with the same syntax using the (K−1)×K
contrasts matrix Smat = rbind(rep(-1,K), diag(K-1)), which in our example with K = 4 is given as

> fac2 = colfac

contrasts(fac2) = A = contr.sum(levels(colfac))[c(4,1:3),]

A

[,1] [,2] [,3]

4 -1 -1 -1

1 1 0 0

2 0 1 0

3 0 0 1

> lm(yval ~ fac2)$coef

(Intercept) fac21 fac22 fac23

7.8713908 -1.7016930 2.4990046 0.8042511

The coefficients shown are γ0, γ2, γ3, γ4, where the γ vector with side-condition
∑K

k=1 γk is determined by

γk + γ0 = µk = β0 + βk for k = 1, . . . ,K, where β1 =
∑K

k=1 γk = 0, so that γk − βk = β0 − γ0 = −1.601563.
In addition, by summing the relations µk = γ0 + γk over k = 1, . . . ,K, we find γ0 = µ1 + · · · + µk and
Kγk = (K − 1)µk −

∑
j:j ̸=k µj .

One further example of contrast coding is Helmert contrasts, given in R for K = 4 levels by

> contr.helmert(4)

[,1] [,2] [,3]

1 -1 -1 -1

2 1 -1 -1

3 0 2 -1

4 0 0 3

with an analogous pattern for larger K. Let the model matrix H0 be defined with i’th row consisting of
first element 1 and remaining K − 1 elements contr.helmert(K)[faci, ]. Then using this matrix H as
the dummy columns in a linear main-effect-only regression model y ∼ fac implies the group-mean coding
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µk = H(h0, h2, . . . , hK)tr, where H is the K×K matrix cbind(1, contr.helmert(K)). It is easy to check
by inverting H that 4h0 = µ1 + µ2 + µ3 + µ4 and

µ2 − µ1 = 2h2, µ3 −
1

2
(µ1 + µ2) = 3h3, µ4 −

1

3
(µ1 + µ2 + µ3) = 4h4, · · ·

Define the redundant parameter h1 = µ1. Then it is easy to check that

µ1 = h1, µ1+µ2 = 2(h1+h2), µ1+µ2+µ3 = 3(h1+h2+h3), µ1+µ2+µ3+µ4 = 4(h1+h2+h3+h4), · · ·

and both in the special case K = 4 and for general case, K h0 = K (h1 + h2 + h3 + h4). Thus the general

side-condition for the Helmert parameterization of dummy columns is h0 =
∑K

k=1 hk.

2 Contrasts specifying Linear Hypotheses for Group Means

In all the one-main-effect linear models discussed above with y ∼ fac and K-level factor, we found that
a parameterization of categorical dummy columns could be motivated either with a K × (K − 1) contrast
matrix or a single linear side-condition connecting the entries of aK+1-entry parameter (θ0, θ1, . . . , θK). The
motivation for such a construction, in classical statistics as taught in STAT 740, is the convenience of being
able to test one-or-two-sided linear hypotheses expressed in terms of group-means µ1, . . . , µK in terms of a
single parameter. Thus, in the treatment-contrasts case, the linear hypotheses of interest are the pairwise-
equality hypotheses H0,k : µk = µ1 for k = 2, . . . ,K, and we can test these in the form H0,k : βk = 0. In
the sum-contrasts case, we are interested in the linear hypotheses H∗

0,k : µk =
∑

j:j ̸=k µj/(K− 1), and these
are equivalently expressed as H∗

0,k : γk = 0. Finally, in the Helmert contrasts case, the linear hypotheses

H†
0,k : µk = k−1

∑k
j=1 µj can be re-espressed as H†

0,k : hk = 0.

The way to see which linear hypotheses a contrast matrix M parameterizes with successive parameters
λ = (λ0, λ2, . . . , λK) set to 0 is simply to translate the equalities

µ =
(
1
∣∣∣M )

λ ⇐⇒ λ =
(
1
∣∣∣M )−1

µ

This is the connecting thread in the derivations of the parameters β, γ, h above: each can be found for the
treatment, sum and Helmert contrast matrices M by the inversion above. For example,

> solve(cbind(1,contr.sum(4)))

1 2 3 4

[1,] 0.25 0.25 0.25 0.25

[2,] 0.75 -0.25 -0.25 -0.25

[3,] -0.25 0.75 -0.25 -0.25

[4,] -0.25 -0.25 0.75 -0.25

> solve(cbind(1,contr.helmert(4)))

1 2 3 4

[1,] 0.25000000 0.25000000 0.25000000 0.25

[2,] -0.50000000 0.50000000 0.00000000 0.00

[3,] -0.16666667 -0.16666667 0.33333333 0.00

[4,] -0.08333333 -0.08333333 -0.08333333 0.25

Now in fact, any of the linear hypotheses described above could be tested in terms of any of the parame-
terizations, within a linear model with independent mean-0 equal-variance errors, either with exact reference
distributions when the errors are normally distributed or in the large-sample setting with general identically
distributed errors. Any of the parameterizations imply (either exactly or via large-sample limit theorems)
jointly normally distributed unbiased estimators (µ̂1, . . . , µ̂K) for µ with variance matrix of the form σ2V
where V is known. Accordingly, linear hypotheses of the form Ltrµ = 0 can be tested using the standard-

ized form of the statistic Ltrµ̂, which involves the estimated variance σ̂2 Ltr V L. So the reparameterization
discussed in Section 1 is not necessary, but it can be very convenient.
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3 Generalized-Linear Model Extensions of Categorical
Dummy-Variable Coding

In categorical data analysis using generalized linear models, we are dealing with multinomial or Poisson
data (Ya, a = 1, . . . , A) with a total of n trials and category probabilities πa or rates n0πa expressed
through a link function g (usually the logarithm or logit) as g−1(X β) for some parameter β, where X is
often a categorical random variable. Suppose for definiteness that g = log as in Poisson regression. Linear
hypotheses expressed in terms of πa are sometimes of interest, but more often the interesting hypotheses are
expressed in terms of contrasts among log(πa) = Xβ. In that case, the considerations of the previous sections
still suggest convenient reparameterizations in terms of treatment or sum contrasts, as long as the model in
question contains main-effect terms only. However, when interactions are present, as they are almost always
considered to be in loglinear models, only treatment or sum side-conditions are generally used, and it is
convenient and important to understand how to transform between the parameterizations for the two types
of side-conditions.

4 Treatment and Sum Side-Conditions for Interactions

As in the Lecture 20 Slide-deck for Stat 770, we consider multinomial data (Ya, a = 1, . . . , A) with
a ↔ (i, j, k, . . .) corresponding to some multi-index for categorical factors X,Z,W, . . .. We assume log πa can
be expanded linearly in terms of parameters λX

i , λZ
j , λ

XZ
ij , etc. with parameter-values structurally equal to 0

for all index-values 1. Equivalently, the same log πa values can be expanded using parameters γX
i , γZ

j , γ
XZ
ij ,

etc. with each type of parameter γ summing to 0 across all possible values of any any of its indices, e.g.
γX
+ = γZ

+ = γXZ
i+ = 0.

The rule for transforming from γ parameters to λ parameters was indicated in a special case in the
Lecture 20 slide-deck. It can be summarized more generally as follows:

� if X appears in no higher interaction, then λX
i = γX

i − γX
1

� if X appears in an interaction XZ, then λX
i includes an additional term γXZ

i1 − γXZ
11

� if X appears in an interaction XZW , then λX
i includes an additional term −γXZW

i11 + γXZW
11 ,

and so on. Similarly,

� if X,Z appears in an interaction XZ and nothing higher, then λXZ
ij = γXZ

ij − γXZ
1j − γXZ

i1 + γXZ
11

� if X,Z appear in XZW , then λXZ
ij has an additional term γXZW

ij1 − γXZW
i11 − γXZW

1j1 + γXZW
111 ,

and so on. This would be very laborious to code in general, but for loglinear models with interactions of
order no higher than 3, it is do-able.
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