STAT 770 Nov. 4 Lecture 19A Some Loose Ends from Chapters 6-8

Reading and Topics for this lecture: Chapters 6-8.

(1) ROC and AUC, again (pp. 224-225)

- (2) Sample Size for X^2 tests (pp. 239-240)
- (3) Interpretation of Logistic Regression Parameters as Causal log Odds Ratios

Second half of Lec. 19 will introduce Loglinear Models, Chap. 9

Formal Definition of ROC & AUC (in GLM setting)

Setting: binary outcomes Y_i , GLM predictions $\hat{\mu}_i$ (continuous)

For threshold t: Diagnostic predicts $Y_i = 1$ when $\hat{\mu}_i \ge t$ ROC: $(1-\text{Spec}(t), \text{Sens}(t)) = \left(\frac{\sum_{i=1}^n (1-Y_i) I_{[\hat{\mu}_i \ge t]}}{\sum_{i=1}^n (1-Y_i)}, \frac{\sum_{i=1}^n Y_i I_{[\hat{\mu}_i \ge t]}}{\sum_{i=1}^n Y_i}\right)$

Coords \downarrow in t: discontinuity at sorted $t \in \{0, 1, \{\hat{\mu}_j\}_{j=1}^n\} = \{a_k\}_{k=0}^m$

AUC: area under ROC by Trapezoid rule

$$\sum_{k=0}^{m-1} \left(\operatorname{Spec}(a_{k+1}) - \operatorname{Spec}(a_k) \right) \cdot \frac{\operatorname{Sens}(a_k) + \operatorname{Sens}(a_{k+1})}{2}$$

R package ROCR can be used with more general binary classifiers

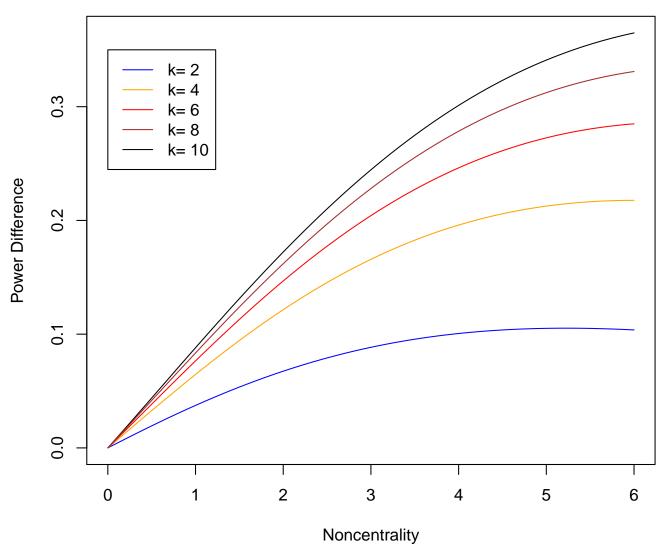
Power Increasing With Degrees of Freedom

Recall last time that we found that 'focused-alternative' trendtests were more powerful than general X^2 tests, as expressed by the inequality

$$1 - ext{pchisq}(\chi^2_{m,lpha},\,m,\,\Delta^2) \ \leq \ 1 - ext{pchisq}(\chi^2_{1,lpha},\,1,\,\Delta^2)$$

for all $m \ge 2$ and $\Delta^2 \ge 0$ and α .

Here is a picture showing it graphically, from the code curve(pchisq(qchisq(.95, 10), 10, x) pchisq(qchisq(.95,1), 1, x), 0,6)



Difference between Noncentral Chi-sq Powers (for tests of size .05) at 1 versus k df, k=2,..,10

4

Power & Sample-Size for X^2 **Contingency-table Tests**

General theory from last time shows: if cell-counts N_i have total table-count n and p free $\pi_i = \pi_i(\beta)$ and GLM-estimated $\pi_i(\hat{\beta}_r)$ under H_0 : $\gamma = 0$ with dim $(\gamma) = q$, then

$$X^{2} = \sum_{i} \frac{(N_{i} - n\pi_{i}(\hat{\beta}))^{2}}{n\pi_{i}(\hat{\beta})} \overset{H_{0}}{\sim} \chi_{q}^{2} \text{ equivalent to Score-Statistic}$$

under $H_{A,n}$: $\gamma = b/\sqrt{n}$, $X^{2} \sim \chi_{q}^{2}(b^{tr}D_{\gamma}b)$, D_{γ} from last time

For power $1 - \delta$ against γ_1 : $1 - \delta \leq 1 - \text{pchisq}(\chi^2_{q,\alpha}, q, n\gamma_1^{tr} D_\gamma \gamma_1)$

Examples: (i) K Multinomial cells, p = K - 1, q = 0(ii) $J \times 2$ table with fixed row-totals n_i , p = J, $\pi_{j,+} = n_j/n$

Intrpretation of Logistic Regression Coefficients

For binary outcomes Y_i , logistic regression on variables X_i :

Agresti often wants to interpret (estimate of) coeff of β_j of binary component $X_{i,j}$ as logit of $\text{logit}(\mu_i)$ with $X_{i,j} = 1$ minus $\text{logit}(\mu_i)$ with $X_{i,j} = 0$, i.e., as a **log odds ratio**.

This is questionable 'causally' if the replacement $0 \mapsto 1$ affects other variables, especially interaction terms $X_{i,j^*} = X_{i,j} \cdot X_{i,j'}$ In that case and more generally, the replacement effect is to change μ_i from $g^{-1}(\beta^{tr} X_i)$ to $g^{-1}(\beta^{tr} X_i^*)$