STAT 770 Nov. 9 Lecture 20 Loglinear Models via Poisson Regression

Reading and Topics for this lecture: Chapter 9 Sections 1-3.
(1) Poisson logLik vs Multinomial logLik (Secs 1.2.5, 9.6.8)
(2) Alternative Side Conditions in Poisson Regression
(3) Transforming Parameters to change Side Conditions

logLik for Poisson versus Multinomial

General setting: data $\left\{Y_{a}\right\}_{a=1}^{M}, M$ fixed, $\sum_{a} \pi_{a}(\beta) \equiv 1$, either

- $\left\{Y_{a}\right\}_{a=1}^{M} \sim \operatorname{Multinom}\left(n,\left\{\pi_{a}(\beta)\right\}_{a=1}^{M}\right), n$ nonrandom, or
- $Y_{a} \sim$ indep. Poisson $\left(n_{0} \pi_{a}\right), n=\sum_{a=1}^{M} Y_{a}$ random

If n random, then distribution of $\left\{Y_{a}\right\}_{a=1}^{M}$ given n Multinom logLik for Multinomial: $\log L_{M}(\beta)=\sum_{a=1}^{M} Y_{a} \log \left(\pi_{a}(\beta)\right)$ logLik for Poisson: $\log L_{P}\left(\beta, n_{0}\right)=\left(n \log n_{0}-n_{0}\right)+\sum_{a=1}^{M} Y_{a} \log \pi_{a}(\beta)$

Simplification: Likelihood factors, with conditional likelihood free of β : so inference for β is asymptotically indep. of n / n_{0} (for large n_{0}) with Observed Info $J=-\sum_{a=1}^{M} Y_{a} \nabla_{\beta}^{\otimes 2} \log \pi_{a}(\beta)$

Loglinear Models are Multinomial GLMs

Now $a \leftrightarrow(i, j, k)$ or other multi-index, e.g. $i \leq I, j \leq J, k \leq K$ model (XZ, W): $\beta=\left(\lambda_{0},\left\{\lambda_{i}^{X}\right\}_{i=2}^{I},\left\{\lambda_{j}^{Z}\right\}_{j=2}^{J},\left\{\lambda_{k}^{W}\right\}_{k=2}^{K},\left\{\lambda_{i j}^{X Z}\right\}_{i, j \geq 2}\right)$

In the next slides, we will discuss choices for explicit side-conditions by which $\lambda_{1}^{X}, \lambda_{1}^{Z}, \lambda_{1}^{W}, \lambda_{1 z}^{X Z}, \lambda_{x 1}^{X Z}$ are determined from β
$\log \pi_{a}=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} I_{[a=(i j k)]}\left\{\lambda_{0}+\lambda_{i}^{X}+\lambda_{j}^{Z}+\lambda_{k}^{W}+\lambda_{i j}^{X Z}\right\}$
Note one condition determining λ_{0} always is $\sum_{a} \pi_{a}=1$. Then $\log L(\beta)=\sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{k=1}^{K} Y_{i j k}\left\{\lambda_{0}+\lambda_{i}^{X}+\lambda_{j}^{Z}+\lambda_{k}^{W}+\lambda_{i j}^{X Z}\right\}$
$=n \lambda_{0}+\sum_{i} Y_{i++} \lambda_{i}^{X}+\sum_{j} Y_{+j+} \lambda_{j}^{X}+\sum_{k} Y_{++k} \lambda_{k}^{W}+\sum_{i, j} Y_{i j+} \lambda_{i j}^{X Z}$

Poisson Regression

Previous slides say that loglinear models can be fit using Poisson log-link regression, and the coefficient MLEs are the same with same distributional properties !

Fitting using glm with factor regressors and default "contrasts" gives the estimates for loglinear parameters satisfying side-condition that level-1 coefficients are 0.

Contrasts will be discussed further in R scripts...

Side Conditions for Loglinear Model ($X Z, W$)

The usual set of side conditions (eg, given by Agresti) is:

$$
\lambda_{+}^{X}=\lambda_{+}^{Z}=\lambda_{+}^{W}=\lambda_{x+}^{X Z}=\lambda_{+z}^{X Z}=0, \quad \text { all } x, z
$$

Use these conditions to solve for $\lambda_{1}^{X}, \lambda_{1}^{Z}, \lambda_{1}^{W}, \lambda_{1 z}^{X Z}, \lambda_{x 1}^{X Z}$ linearly from β components for substitution into $\log L(\beta)$ above

Simpler set of side conditions: $\lambda_{1}^{X}=\lambda_{1}^{Z}=\lambda_{1}^{W}=\lambda_{1 z}^{X Z}=\lambda_{x 1}^{X Z}=0$
Then $\log L(\beta)=\sum_{a=1}^{M} Y_{a} \sum_{t=1}^{p} H_{a, t} \beta_{t}$ with design matrix
$H=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\left|\left\{I_{[i(a)=x]}\right\}_{a}, 1<x \leq I\right|\left\{I_{[j(a)=z]}\right\} a, 1<z \leq J \mid\right.$
$\left.\left\{I_{[k(a)=w]}\right\}_{a}, 1<w \leq K \mid\left\{I_{[i(a)=x, j(a)=z]}\right\}_{a}, 1<x \leq I, 1<z \leq J\right]$

Expression for $\log L$ Under Sum Side-Conditons

The design-matrix H has dimensions $(I J K) \times(I J+K-1)$
$a \in\{1, \ldots, I J K\}$, and $a \leftrightarrow(i j k)$ with $i=i(a), j=j(a), k=k(a)$
Under sum side-conditions, it is clear that $\log L(\beta)$ has an explicit but different representation in terms of β and H.

The coefficients $\lambda_{1}^{X}, \lambda_{1}^{Z}, \lambda_{1}^{W}, \lambda_{1 z}^{X Z}, \lambda_{x 1}^{X Z}$ are in that case all linear combinations of β entries (eg $\lambda_{1}^{X}=-\sum_{i=2}^{J} \lambda_{i}^{X}$)

Also, the dummy-columns for factor-levels 1 are expressed as linear combinations of dummies for larger factor-level indices:
e.g., $\left.\left\{I_{[i(a)=1]]}\right\}_{a}=1-\sum_{x=2}^{I}\left\{I_{[i(a)=x]}\right\}\right\}_{a}$

Example: (XZ, W) model with Binary Factors

In this case, $I=J=K=2$, design matrix H is 8×5
$H=\left[\mathbf{1}\left|\left\{I_{[i(a)=2]}\right\}_{a}\right|\left\{I_{[j(a)=2]}\right\} a\left|\left\{I_{[k(a)=2]}\right\}_{a}\right|\left\{I_{[i(a)=j(a)=2]}\right\}_{a}\right]$
Let $\gamma_{0}, \gamma_{i}^{X}, \gamma_{j}^{Z}, \gamma_{k}^{W}, \gamma_{i j}^{X Z}$ be the coefficients for the loglinear model with level-1 coefficients $\equiv 0$
$\lambda_{0}, \lambda_{i}^{X}, \lambda_{j}^{Z}, \lambda_{k}^{W}, \lambda_{i j}^{X Z}$ coefficients for model with sum-constraints
Claim. For each of these two sets of coefficients, the other can be defined uniquely such that for all sets of $Y_{x z w}$ data

$$
\begin{aligned}
& \sum_{x, z, w}\left(\lambda_{0}+\lambda_{x}^{X}+\lambda_{z}^{Z}+\lambda_{w}^{W}+\lambda_{x z}^{X Z}\right) Y_{x z w} \equiv \\
& \sum_{x, z, w}\left(\gamma_{0}+\gamma_{x}^{X}+\gamma_{z}^{Z}+\gamma_{w}^{W}+\gamma_{x z}^{X Z}\right) Y_{x z w}
\end{aligned}
$$

Algebraic Proof of Claim in the Example

Starting from the sum involving the λ 's, express

$$
\begin{aligned}
& \lambda_{x z}^{X Z}=\left(\lambda_{x z}^{X Z}-\lambda_{x 1}^{X Z}-\lambda_{1 z}^{X Z}+\lambda_{11}^{X Z}\right)+\lambda_{x 1}^{X Z}+\lambda_{1 z}^{X Z}-\lambda_{11}^{X Z} \\
& \lambda_{x}^{X}=\left(\lambda_{x}^{X}-\lambda_{1}^{X}\right)+\lambda_{1}^{X}, \quad \lambda_{x 1}^{X Z}=\left(\lambda_{x 1}^{X Z}-\lambda_{11}^{X Z}\right)+\lambda_{11}^{X Z}
\end{aligned}
$$

and so on. The terms in parentheses automatically are 0 for factor levels x, z, or w of 1 . Collecting terms, we find with

$$
\begin{gathered}
\gamma_{x z}^{* X Z}=\lambda_{x z}^{X Z}-\lambda_{x 1}^{X Z}-\lambda_{1 z}^{X Z}+\lambda_{11}^{X Z}, \quad \gamma_{w}^{* W}=\lambda_{w}^{W}-\lambda_{1}^{W} \\
\gamma_{x}^{* X}=\lambda_{x}^{X}-\lambda_{1}^{X}+\lambda_{x 1}^{X Z}-\lambda_{11}^{X Z}, \quad \gamma_{z}^{* Z}=\lambda_{z}^{Z}-\lambda_{1}^{Z}+\lambda_{1 z}^{X Z}-\lambda_{11}^{X Z}
\end{gathered}
$$

that the first blue line in the Claim is equal to

Algebraic Proof, continued

the first blue line in the Claim is equal to:

$$
\begin{aligned}
\sum_{x z} & Y_{x z}+\gamma_{x}^{* X Z}+\sum_{w} Y_{++w} \gamma_{w}^{* W}+\sum_{x} Y_{x++} \gamma_{x}^{* X}+\sum_{z} Y_{+z+} \gamma_{z}^{* Z} \\
& \quad+n\left(\lambda_{0}+\lambda_{1}^{X}+\lambda_{1}^{Z}+\lambda_{1}^{W}+\lambda_{11}^{X Z}\right)
\end{aligned}
$$

It follows that the Claim holds if the γ^{\prime} s are all replaced by γ^{*} 's, where $\gamma_{0}^{*}=\lambda_{0}+\lambda_{1}^{X}+\lambda_{1}^{Z}+\lambda_{1}^{W}+\lambda_{11}^{X Z}$

In the Example, the sum-constraints for binary factors imply
$\lambda_{x}^{X}=(-1)^{x} \lambda_{2}^{X}, \lambda_{z}^{Z}=(-1)^{z} \lambda_{2}^{Z}, \lambda_{w}^{W}=(-1)^{w} \lambda_{2}^{W}, \lambda_{x z}^{X Z}=(-1)^{x+z} \lambda_{22}^{X Z}$
so $\quad \gamma_{0}=\lambda_{0}+\lambda_{22}^{X Z}-\lambda_{2}^{X}-\lambda_{2}^{Z}-\lambda_{2}^{W}$, and
$\gamma_{22}^{X Z}=4 \lambda_{22}^{X Z}, \gamma_{2}^{W}=2 \lambda_{2}^{W}, \gamma_{2}^{X}=2\left(\lambda_{2}^{X}-\lambda_{22}^{X}\right), \gamma_{2}^{Z}=2\left(\lambda_{2}^{Z}-\lambda_{22}^{X Z}\right)$

Mapping Between Coefficient-sets in the Example

The mapping from $\underline{\lambda}=\left(\lambda_{0}, \lambda_{2}^{X}, \lambda_{2}^{Z}, \lambda_{2}^{W}, \lambda_{22}^{X Z}\right)$ to $\underline{\gamma}=\left(\gamma_{0}, \gamma_{2}^{X}, \gamma_{2}^{Z}, \gamma_{2}^{W}, \gamma_{22}^{X Z}\right)$ is linear and invertible,

$$
\underline{\gamma}=\left(\begin{array}{rrrrr}
1 & -1 & -1 & -1 & 1 \\
0 & 2 & 0 & 0 & -2 \\
0 & 0 & 2 & 0 & -2 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right) \underline{\lambda} \equiv C \underline{\lambda}
$$

and the constraint determining λ_{0} is unaffected by this mapping. Similarly:

$$
\begin{gathered}
\lambda_{x z}^{X Z}=\frac{(-1)^{x+z}}{4} \gamma_{22}^{X Z}, \quad \lambda_{w}^{W}=\frac{(-1)^{w}}{2} \gamma_{2}^{W} \\
\lambda_{x}^{X}=\frac{(-1)^{x}}{4}\left(2 \gamma_{2}^{X}+\gamma_{22}^{X Z}\right), \quad \lambda_{z}^{Z}=\frac{(-1)^{z}}{4}\left(2 \gamma_{2}^{Z}+\gamma_{22}^{X Z}\right)
\end{gathered}
$$

R implementation

See topic (4) in Lec19BLogLin. RLog script for discussion of how to map between the two kinds of side-conditions.

- The constraints setting level-1 loglinear coefficients to 0 are equivalent to the same side-condition in Poisson regression, which gives variance-covariance for estimated coefficients
- The fitted loglinear coefficients using sum constraints can be found in the loglm fitted-model output list-component \$param.
- Can transform between the two using the C matrix to obtain variance-covariance for fitted loglinear model coefficients with the sum-constraint side condition. This is an exercise in Delta method and the concepts of this Lecture, carried out next time.

