
STAT 770 Nov. 9 Lecture 20

Loglinear Models via Poisson Regression

Reading and Topics for this lecture: Chapter 9 Sections 1-3.

(1) Poisson logLik vs Multinomial logLik (Secs 1.2.5, 9.6.8)

(2) Alternative Side Conditions in Poisson Regression

(3) Transforming Parameters to change Side Conditions
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logLik for Poisson versus Multinomial

General setting: data {Ya}Ma=1, M fixed,
∑

a πa(β) ≡ 1, either

• {Ya}Ma=1 ∼ Multinom(n, {πa(β)}Ma=1), n nonrandom, or

• Ya ∼ indep. Poisson(n0 πa), n =
∑M

a=1 Ya random

If n random, then distribution of {Ya}Ma=1 given n Multinom

logLik for Multinomial: logLM(β) =
∑M

a=1 Ya log(πa(β))

logLik for Poisson: logLP (β, n0) =
(
n logn0−n0

)
+

∑M
a=1 Ya logπa(β)

Simplification: Likelihood factors, with conditional likelihood
free of β: so inference for β is asymptotically indep. of n/n0
(for large n0) with Observed Info J = −

∑M
a=1 Ya∇⊗2

β logπa(β)
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Loglinear Models are Multinomial GLMs

Now a ↔ (i, j, k) or other multi-index, e.g. i ≤ I, j ≤ J, k ≤ K

model (XZ, W): β =
(
λ0, {λXi }Ii=2, {λ

Z
j }

J
j=2, {λ

W
k }Kk=2, {λ

XZ
ij }i,j≥2

)
In the next slides, we will discuss choices for explicit side-conditions

by which λX1 , λZ1 , λ
W
1 , λXZ

1z , λXZ
x1 are determined from β

logπa =
∑I

i=1
∑J

j=1
∑K

k=1 I[a=(ijk)]

{
λ0+ λXi + λZj + λWk + λXZ

ij

}

Note one condition determining λ0 always is
∑

a πa = 1. Then

logL(β)=
∑I

i=1
∑J

j=1
∑K

k=1 Yijk

{
λ0 + λXi + λZj + λWk + λXZ

ij

}
= nλ0+

∑
i Yi++ λXi +

∑
j Y+j+ λXj +

∑
k Y++k λ

W
k +

∑
i,j Yij+ λXZ

ij
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Poisson Regression

Previous slides say that loglinear models can be fit using Poisson

log-link regression, and the coefficient MLEs are the same with

same distributional properties !

Fitting using glm with factor regressors and default “contrasts”

gives the estimates for loglinear parameters satisfying side-condition

that level-1 coefficients are 0.

Contrasts will be discussed further in R scripts . . .
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Side Conditions for Loglinear Model (XZ,W )

The usual set of side conditions (eg, given by Agresti) is:

λX+ = λZ+ = λW+ = λXZ
x+ = λXZ

+z = 0 , all x, z

Use these conditions to solve for λX1 , λZ1 , λ
W
1 , λXZ

1z , λXZ
x1 linearly

from β components for substitution into logL(β) above

Simpler set of side conditions: λX1 = λZ1 = λW1 = λXZ
1z = λXZ

x1 = 0

Then logL(β) =
∑M

a=1 Ya
∑p

t=1Ha,t βt with design matrix

H =
[ 1

...
1

∣∣∣∣ {I[i(a)=x]}a, 1 < x ≤ I

∣∣∣∣ {I[j(a)=z]}a, 1 < z ≤ J

∣∣∣∣
{I[k(a)=w]}a, 1 < w ≤ K

∣∣∣∣ {I[i(a)=x,j(a)=z]}a, 1 < x ≤ I, 1 < z ≤ J

]
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Expression for logL Under Sum Side-Conditons

The design-matrix H has dimensions (IJK)× (IJ +K − 1)

a ∈ {1, . . . , IJK}, and a ↔ (ijk) with i = i(a), j = j(a), k = k(a)

Under sum side-conditions, it is clear that logL(β) has an

explicit but different representation in terms of β and H.

The coefficients λX1 , λZ1 , λ
W
1 , λXZ

1z , λXZ
x1 are in that case all

linear combinations of β entries (eg λX1 = −
∑J

i=2 λXi )

Also, the dummy-columns for factor-levels 1 are expressed as

linear combinations of dummies for larger factor-level indices:

e.g., {I[i(a)=1]]}a = 1−
∑I

x=2 {I[i(a)=x]]}a
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Example: (XZ, W) model with Binary Factors

In this case, I = J = K = 2, design matrix H is 8× 5

H =
[
1
∣∣∣∣ {I[i(a)=2]}a

∣∣∣∣ {I[j(a)=2]}a
∣∣∣∣ {I[k(a)=2]}a

∣∣∣∣ {I[i(a)=j(a)=2]}a
]

Let γ0, γ
X
i , γZj , γWk , γXZ

ij be the coefficients for the loglinear

model with level-1 coefficients ≡ 0

λ0, λ
X
i , λZj , λ

W
k , λXZ

ij coefficients for model with sum-constraints

Claim. For each of these two sets of coefficients, the other can

be defined uniquely such that for all sets of Yxzw data∑
x,z,w

(
λ0 + λXx + λZz + λWw + λXZ

xz

)
Yxzw ≡∑

x,z,w

(
γ0 + γXx + γZz + γWw + γXZ

xz

)
Yxzw
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Algebraic Proof of Claim in the Example

Starting from the sum involving the λ’s, express

λXZ
xz = (λXZ

xz − λXZ
x1 − λXZ

1z + λXZ
11 ) + λXZ

x1 + λXZ
1z − λXZ

11

λXx = (λXx − λX1 ) + λX1 , λXZ
x1 = (λXZ

x1 − λXZ
11 ) + λXZ

11

and so on. The terms in parentheses automatically are 0 for

factor levels x, z, or w of 1. Collecting terms, we find with

γ∗XZ
xz = λXZ

xz − λXZ
x1 − λXZ

1z + λXZ
11 , γ∗Ww = λWw − λW1

γ∗Xx = λXx − λX1 + λXZ
x1 − λXZ

11 , γ∗Zz = λZz − λZ1 + λXZ
1z − λXZ

11

that the first blue line in the Claim is equal to
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Algebraic Proof, continued

the first blue line in the Claim is equal to:∑
xz Yxz+ γ∗XZ

xz +
∑

w Y++w γ∗Ww +
∑

x Yx++ γ∗Xx +
∑

z Y+z+ γ∗Zz

+n
(
λ0 + λX1 + λZ1 + λW1 + λXZ

11

)
It follows that the Claim holds if the γ’s are all replaced by γ∗’s,
where γ∗0 = λ0 + λX1 + λZ1 + λW1 + λXZ
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In the Example, the sum-constraints for binary factors imply

λXx = (−1)x λX2 , λZz = (−1)z λZ2 , λ
W
w = (−1)w λW2 , λXZ

xz = (−1)x+z λXZ
22

so γ0 = λ0 + λXZ
22 − λX2 − λZ2 − λW2 , and

γXZ
22 = 4λXZ

22 , γW2 = 2λW2 , γX2 = 2(λX2 − λXZ
22 ), γZ2 = 2(λZ2 − λXZ

22 )
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Mapping Between Coefficient-sets in the Example

The mapping from λ = (λ0, λ
X
2 , λZ2 , λ

W
2 , λXZ

22 ) to

γ = (γ0, γ
X
2 , γZ2 , γW2 , γXZ

22 ) is linear and invertible,

γ =


1 −1 −1 −1 1
0 2 0 0 −2
0 0 2 0 −2
0 0 0 2 0
0 0 0 0 4

 λ ≡ C λ

and the constraint determining λ0 is unaffected by this mapping.
Similarly:

λXZ
xz =

(−1)x+z

4
γXZ
22 , λWw =

(−1)w

2
γW2

λXx =
(−1)x

4
(2γX2 + γXZ

22 ), λZz =
(−1)z

4
(2γZ2 + γXZ

22 )

10



R implementation

See topic (4) in Lec19BLogLin.RLog script for discussion of how
to map between the two kinds of side-conditions.

• The constraints setting level-1 loglinear coefficients to 0 are
equivalent to the same side-condition in Poisson regression, which
gives variance-covariance for estimated coefficients

• The fitted loglinear coefficients using sum constraints can be
found in the loglm fitted-model output list-component $param.

• Can transform between the two using the C matrix to obtain
variance-covariance for fitted loglinear model coefficients with
the sum-constraint side condition. This is an exercise in Delta
method and the concepts of this Lecture, carried out next time.
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