
STAT 770 Nov. 11 Lecture 21

Transforming Poisson GLM Parameters to Loglinear

Reading and Topics for this lecture: Chapter 9 Secs. 1-3, 5-7.

(1) Poisson Regression Model Matrix & Contrasts

(2) Transforming Parameters between Side Conditions

(3) Confidence Intervals for Parameters & Cell-Probs

(4) Multinomial Logistic as Loglinear / Poisson Model

(5) Iterative Proportional Fitting & Raking
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Poisson Regression Model Matrix

Factors X,Z,W , Data {Ya}Ma=1, Combinations a ↔ (i, j, k)

Model (W XZ) matrix H, dummy columns (IJK)× (K+ IJ−1)
– ordering of columns matters a lot!

Coefficients β maximize logLik=
∑

a Ya (Hβ)a−
∑

a exp((Hβ)a)

Model specification (in glm in R): Y ∼ W+X∗Z either by directly
supplying the dummy columns to reflect desired side-condition
or using contrasts() function in R

These alternative ways of specifying the model fitting are
covered in the current R script Lec21Loglin.RLog.
See especially Section (8) of that Script.



Mapping Between Coefficient-sets in the Example

The mapping from λ = (λ0, λ
X
2 , λZ2 , λ

W
2 , λXZ

22 ) to

γ = (γ0, γ
X
2 , γZ2 , γW2 , γXZ

22 ) is linear and invertible,

γ =


1 −1 −1 −1 1
0 2 0 0 −2
0 0 2 0 −2
0 0 0 2 0
0 0 0 0 4

 λ ≡ C λ

and the constraint determining λ0 is unaffected by this mapping.
Similarly:

λXZ
xz =

(−1)x+z

4
γXZ
22 , λWw =

(−1)w

2
γW2

λXx =
(−1)x

4
(2γX2 + γXZ

22 ), λZz =
(−1)z

4
(2γZ2 + γXZ

22 )
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Using the Mapping for Estimates & Variances

If you know matrix C transforming between pararameter for dif-

ferent size-conditions, use it directly for estimates and variances.

Poisson GLM estmates give MLEs, variances γ̂, V̂ (γ̂)

Transformation property of MLE says:

λ̂ = C−1γ̂ , V̂ (λ̂) = C−1 V̂ (γ̂) (C−1)tr

Implementation is shown in Sec. (6) of script Lec21Loglin.RLog
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Confidence Intervals for Loglinear Coefficients

From λ̂, V̂ (λ̂) directly find Wald CIs λ̂r ± zα/2

[
V̂ (λ̂)rr

]1/2
or if estimates came directly from Poisson glm, use confint

For πa CI, use definition as nonlinear function πa = ga(λ) of λ

plus ∆ Method

Start from estimate λ̂ (incl. intercept) and its model-matrix H∗

π̂a = exp((H∗λ̂)a)/
M∑
b=1

exp((H∗λ̂)b) ≡ ga(λ̂)

for M-vector-valued function g = {ga}Ma=1 with Jacobian Jg

Jg(λ) = (∇λ g
tr(λ))tr =

[
diag(π) − π πtr

]
H∗
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Confidence Interval for Loglinear Cell-Prob

From last slide (πa’s do not actually depend on λ0)

π̂a = exp((H∗λ̂)a)/
M∑
b=1

exp((H∗λ̂)b) ≡ ga(λ̂)

for M-vector-valued function g = {ga}Ma=1 with Jacobian Jg

Jg(λ) = (∇λ g
tr(λ))tr =

[
diag(π) − π πtr

]
H∗

The Delta-Method variance-covariance matrix for π̂ is

Jg(λ̂) V̂ (λ̂) (Jg(λ̂))
tr =

[
diag(π)−π πtr

]
H∗ V̂ (λ̂)H∗tr

[
diag(π)−π πtr

]
The diagonal-element square roots are the SE’s of π̂a
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Multinomial Logistic Models are Conditional Loglinear

For discrete covariates Xa, and Ya ∈ {1, . . . ,K} multinomial

multinomial-logistic says for k = 2, . . . ,K,

P (Ya = k |Xa) = exp(β(k)trXa)
/[

1+
∑K

r=2 exp(β(r)trXa)
]

Therefore (Xa, Ya) satisfy a loglinear model with M ×K cells if

Xa ∈ {1, . . . ,M} is loglinear on M cells (which may be obtained

by multi-way cross-tabulation of factor levels).

This is true in particular if K = 2, the logistic case. And if

K > 2, Agresti makes a similar observation about the model for

outcomes conditioned to fall in a specified pair k1, k2 of outcome

categories. That seems to be the main point made in Sec. 9.5.
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Distinction between GLM and Loglinear Approaches

If a dataset (Xa, Ya, Za,Wa) consists completely of discrete

variables, loglinear models are GLMs.

GLMs can be specified more generally

• not requiring that all variables be modeled, and

• not requiring that all variables be discrete;

• and including cluster random effects (Ch. 13)

Loglinear models seem popular among (social-science)

investigators focused on interactions as a way of understanding

causal pathways
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Iterative Proportional Fitting (Sec.9.7.2-9.7.4)

Start with counts (summed weights, in survey contexts) µ
(0)
a

a ↔ (i, j, k, · · · ) to be marginalized (some factor indices summed)

• restrict to example (i,j,k) in model (XZ, W)

• target counts µxz+ = Yxz+, µ++w = Y++w

• in iterative passes m ≥ 0: hit targets exactly by multiplication

using respective factors fxz, fw

µ
(2m+1)
ijk = µ

(2m)
ijk

Yij+

µ
(2m)
ij+

, µ
(2m+2)
ijk = µ

(2m+1)
ijk

Y++k

µ
(2m+1)
++k

Convergence occurs under general conditions (usually quickly)

when all µ(0)a and marginals are positive
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