STAT 770 Nov. 16 Lecture 22
 Iterative Proportional Fitting and Survey Raking

Reading and Topics for this lecture: Chapter 9 Sections 9.7.29.7.4, Wikipedia article on "Raking", web sources on "Alternating Minimization".
(1) Iterative Proportional Fitting Algorithm (Deming \& Stephan)
(2) Origin in Maximum Likelihood with Constrained Parameters
(3) Survey Weight-Adjustment with Calibration Conditions
(4) "Proof" of Convergence

Iterative Proportional Fitting (Sec.9.7.2-9.7.4)

Start with counts (summed weights, in survey contexts) $\mu_{a}^{(0)}$
$a \leftrightarrow(i, j, k, \cdots)$ to be marginalized (some factor indices summed)

- restrict to example ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) in model (XZ, W)
- target counts $\mu_{x z+}=Y_{x z+}, \mu_{++w}=Y_{++w}$
- in iterative passes $m \geq 0$: hit targets exactly by multiplication using respective factors $f_{x z}, f_{w}$

$$
\mu_{i j k}^{(2 m+1)}=\mu_{i j k}^{(2 m)} \frac{Y_{i j+}}{\mu_{i j+}^{(2 m)}}, \quad \mu_{i j k}^{(2 m+2)}=\mu_{i j k}^{(2 m+1)} \frac{Y_{++k}}{\mu_{++k}^{(2 m+1)}}
$$

Convergence occurs under general conditions (usually quickly) when all $\mu_{a}^{(0)}$ and marginals are positive

MLE in Loglinear Models

Recall:

- Ioglinear models are natural exponential families with coefficients $\lambda^{X Z}$ for included interactions appearing in logLik multiplying sufficient statistics $Y_{x z+}$
- in natural exponential families, MLEs are Generalized Method of Moments solutions of equations $E_{\lambda}\left(T_{k}\right)=T_{k}$. Thus the (unique, if they exist) ML solutions have cell means $\mu_{x z w}(\lambda)$ satisfying $\mu_{x z+}=Y_{x z+}$, etc.
- if H is the design matrix of dummy columns, then the Poisson regression logLik to be maximized is

$$
\sum_{a} Y_{a}(H \beta)_{a}-\sum_{a} \exp \left((H \beta)_{a}\right)
$$

Reformulation of the Minimization Problem

Using the information on the last slide: MLE $\widehat{\beta}$ solves
Loglinear ML Problem: $\min _{\mu_{a}=\exp \left((H \beta)_{a}\right)} \sum_{a}\left\{\mu_{a}-Y_{a} \log \left(\mu_{a}\right)\right\}$ subject to all $\mu_{x z+}=Y_{x z+}$, etc. (all terms like $X Z$ in model) Rewrite constraints: (*) $\quad \sum_{a=1}^{M}\left(Y_{a}-\mu_{a}\right) H_{a, b}=0, \quad b=1, \ldots, d$

In the loglinear ML: rewrite objective function as

$$
\sum_{a=1}^{M}\left\{\mu_{a}-\mu_{a} \log \left(\mu_{a}\right)-\left(Y_{a}-\mu_{a}\right)(H \beta)_{a}\right\}
$$

Under the constraint (*), last term drops out, and ML problem is equivalent to:

$$
\begin{equation*}
\min _{\mu_{a}=\exp \left((H \beta)_{a}\right)} \sum_{a}\left\{\mu_{a}-\mu_{a} \log \left(\mu_{a}\right)\right\} \quad \text { subject to } \tag{*}
\end{equation*}
$$

Alternative Form of ML Problem

Alternative Problem: $\min _{\mu_{a}} \sum_{a}\left\{\mu_{a}-\mu_{a} \log \left(\mu_{a}\right)\right\}$
over all $\mu_{a}>0$ subject to same constraints (*)

The restriction on parametric form of μ_{a} has been dropped. In the loglinear ML problem the constraints were redundant; in the 2nd problem the assumption of loglinear form is redundant!

Assume that the marginals $\sum_{a} Y_{a} H_{a, b}$ are all nonzero in what follows, and also in the IPF/Raking iterations on first slide. Find additional discussion of tables with sparseness and 0's in Agresti Sec. 10.6.2.

Lagrange Multipliers for the Alternative Problem

Use Lagrange multipliers $\tau \in \mathbb{R}^{d}$ to define unconstrained problem

$$
\begin{equation*}
\min _{\underline{\mu}, \tau} \sum_{a=1}^{M}\left\{\mu_{a}-\mu_{a} \log \left(\mu_{a}\right)-\left(Y_{a}-\mu_{a}\right)(H \tau)_{a}\right\} \tag{A}
\end{equation*}
$$

Setting $\nabla_{\tau}=0$ just gives back the constraints (*)
Setting $\partial / \partial \mu_{a}=0$ implies $\log \left(\mu_{a}\right)=(H \tau)_{a}$
This shows the loglinear form is the only possible form for the minimizer of the alternative problem, so the loglinear ML problem is equivalent to it!

We also find: the Lagrange multipliers τ are precisely the λ log-linear-model coefficients (in which side-conditions prevent redundant coefficients).

Generalized Problem - Survey Calibration

(Multi-way) table with cells a and aggregated design weights d_{a} (from units i collected in a survey cross-classified and found to fall in cell a). Question: how to perturb these weights cell by cell as little as possible to achieve weights so that for each of a set of dummy columns $\left\{H_{a, b}, a=1, \ldots, M\right\}$ indexed by $b=1, \ldots, d$
(\dagger) $\quad \sum_{a=1}^{M} w_{a} H_{a, b}=t_{b} \quad$ known totals, $b=1, \ldots, d$
Formal Statement: $\min _{\underline{w}} \sum_{a=1}^{M} d_{a} G\left(w_{a} / d_{a}\right)$ subject to
where $G(z)$ is a function with $G(1)=0, G^{\prime}(1)=0, G^{\prime \prime}>0$.
Examples: (a) $G(z)=(z-1)^{2} / 2$ linear calibration,
(b) $G(z)=z \log z-z+1 \quad$ raking calibration

Deville and Särndal 1992 Jour. Amer. Statist. Assoc.

Survey Calibration \& Generalized Raking, cont'd

In contingency-table iid data setting, $d_{a}=Y_{a}$ are the observed counts, and $t_{b}=\sum_{a=1}^{M} w_{a} H_{a, b}$ the desired marginal totals.
'Marginal totals' may overlap information about more than one factor, e.g. SEX \times RACE and SEX \times AGE-Group as separate t_{b}.

Lagrangian objective: $\sum_{a} d_{a} G\left(\frac{w_{a}}{d_{a}}\right)+\sum_{b=1}^{d} \gamma_{b}\left(\sum_{a=1}^{M} w_{a} H_{a, b}-t_{b}\right)$
Gradient equation: $G^{\prime}\left(w_{a} / d_{a}\right)=(H \gamma)_{a} \Rightarrow w_{a}=d_{a} \cdot\left(G^{\prime}\right)^{-1}\left((H \gamma)_{a}\right)$
In raking example (b): $G^{\prime}(z)=\log z \Rightarrow w_{a}=d_{a} e^{(H \gamma)_{a}}$
In surveys may have $M \sim 10^{4}, d \sim 30$; resulting weight-vector $w \in \mathbb{R}^{M}$ is parametric, loglinear with $\log d_{a}$ as offsets.

Features of the IPF Algorithm

Key observation: if the algorithm converges, the only possible limit satisfies the constraints (*)

So if convergence is shown, limit is unique fitted loglinear ML.

Sketch Proof of Convergence. Associate subvector $\beta_{\text {sub }}$ with columns $H_{\cdot, b}$ for $b \in$ sub for single marginal factor (eg $\times Z$).

Take gradient with respect to $\beta_{s u b}$ of parametric $-\log L i k$.

$$
\nabla_{\beta_{s u b}} \sum_{a=1}^{M}\left\{e^{(H \beta)_{a}}-Y_{a}(H \beta)_{a}\right\}=\sum_{a=1}^{M} H_{a, s u b}\left(\mu_{a}-Y_{a}\right)
$$

Alternating Minimization and Raking

Setting this to 0 finds partial minimum (wrt $\beta_{s u b}$). Doing this repeatedly (alternating minimization) converges to minimum of convex objective function.

Each raking pass finds a unique partial minimum for the overall convex -logLik

Each raking pass preserves the form $\log \mu_{a}=(H \beta)_{a}$, maps subvector $\beta_{\text {sub }} \mapsto \beta_{\text {sub }}^{(*)}=\beta_{\text {sub }}+\delta_{\text {sub }}$
achieving constraint $\sum_{a=1}^{M}\left(Y_{a}-\exp \left(\left(H \beta^{(*)}\right)_{a}\right) H_{a, b}=0, \quad b \in\right.$ sub.

Next Lecture - GLMs with Random Effects

This is material from Chapter 13, also see the Technical Report \& Handout linked at Handouts topic (1)(ii) on the STAT 770 course web-page.

General framework: observations $Y_{a, c}$ now observed for cells a in clusters c
$P\left(Y_{a, c}=y \mid \epsilon_{c}\right)$ a GLM with predictors $X_{a, c}$, and shared family, link and parameters β and offset ϵ_{c}, where ϵ_{c} are iid cluster-effects, usually $\mathcal{N}\left(0, \sigma_{e}^{2}\right)$

