
STAT 770 Nov. 16 Lecture 22

Iterative Proportional Fitting and Survey Raking

Reading and Topics for this lecture: Chapter 9 Sections 9.7.2-

9.7.4, Wikipedia article on “Raking”, web sources on “Alternat-

ing Minimization”.

(1) Iterative Proportional Fitting Algorithm (Deming & Stephan)

(2) Origin in Maximum Likelihood with Constrained Parameters

(3) Survey Weight-Adjustment with Calibration Conditions

(4) “Proof” of Convergence
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Iterative Proportional Fitting (Sec.9.7.2-9.7.4)

Start with counts (summed weights, in survey contexts) µ
(0)
a

a ↔ (i, j, k, · · · ) to be marginalized (some factor indices summed)

• restrict to example (i,j,k) in model (XZ, W)

• target counts µxz+ = Yxz+, µ++w = Y++w

• in iterative passes m ≥ 0: hit targets exactly by multiplication

using respective factors fxz, fw

µ
(2m+1)
ijk = µ

(2m)
ijk

Yij+

µ
(2m)
ij+

, µ
(2m+2)
ijk = µ

(2m+1)
ijk

Y++k

µ
(2m+1)
++k

Convergence occurs under general conditions (usually quickly)

when all µ(0)a and marginals are positive
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MLE in Loglinear Models

Recall:

• loglinear models are natural exponential families with coeffi-
cients λXZ for included interactions appearing in logLik multi-
plying sufficient statistics Yxz+

• in natural exponential families, MLEs are Generalized Method
of Moments solutions of equations Eλ(Tk) = Tk. Thus the
(unique, if they exist) ML solutions have cell means µxzw(λ) sat-
isfying µxz+ = Yxz+, etc.

• if H is the design matrix of dummy columns, then the
Poisson regression logLik to be maximized is∑

a
Ya (Hβ)a −

∑
a

exp((Hβ)a)
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Reformulation of the Minimization Problem

Using the information on the last slide: MLE β̂ solves

Loglinear ML Problem: minµa=exp((Hβ)a)
∑

a

{
µa −Ya log(µa)

}
subject to all µxz+ = Yxz+, etc. (all terms like XZ in model)

Rewrite constraints: (*)
∑M

a=1 (Ya − µa)Ha,b = 0, b = 1, . . . , d

In the loglinear ML: rewrite objective function as

M∑
a=1

{
µa − µa log(µa) − (Ya − µa)(Hβ)a

}

Under the constraint (*), last term drops out, and ML problem
is equivalent to:

minµa=exp((Hβ)a)
∑

a

{
µa − µa log(µa)

}
subject to (*)
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Alternative Form of ML Problem

Alternative Problem: minµa
∑

a

{
µa − µa log(µa)

}
over all µa > 0 subject to same constraints (*)

The restriction on parametric form of µa has been dropped. In

the loglinear ML problem the constraints were redundant; in the

2nd problem the assumption of loglinear form is redundant!

Assume that the marginals
∑

a YaHa,b are all nonzero in what

follows, and also in the IPF/Raking iterations on first slide. Find

additional discussion of tables with sparseness and 0’s in Agresti

Sec. 10.6.2.
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Lagrange Multipliers for the Alternative Problem

Use Lagrange multipliers τ ∈ Rd to define unconstrained problem

min
µ, τ

M∑
a=1

{
µa − µa log(µa) − (Ya − µa)(Hτ)a

}
(A)

Setting ∇τ = 0 just gives back the constraints (*)

Setting ∂/∂µa = 0 implies log(µa) = (Hτ)a

This shows the loglinear form is the only possible form for
the minimizer of the alternative problem, so the loglinear
ML problem is equivalent to it!

We also find: the Lagrange multipliers τ are precisely the λ
log-linear-model coefficients (in which side-conditions prevent
redundant coefficients).
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Generalized Problem – Survey Calibration

(Multi-way) table with cells a and aggregated design weights da
(from units i collected in a survey cross-classified and found to
fall in cell a). Question: how to perturb these weights cell by cell
as little as possible to achieve weights so that for each of a set
of dummy columns {Ha,b, a = 1, . . . ,M} indexed by b = 1, . . . , d

(†)
∑M

a=1 waHa,b = tb known totals, b = 1, . . . , d

Formal Statement: minw
∑M

a=1 daG(wa/da) subject to (†)

where G(z) is a function with G(1) = 0, G′(1) = 0, G′′ > 0.

Examples: (a) G(z) = (z − 1)2/2 linear calibration,

(b) G(z) = z log z − z +1 raking calibration

Deville and Särndal 1992 Jour. Amer. Statist. Assoc.
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Survey Calibration & Generalized Raking, cont’d

In contingency-table iid data setting, da = Ya are the observed
counts, and tb =

∑M
a=1 waHa,b the desired marginal totals.

‘Marginal totals’ may overlap information about more than one
factor, e.g. SEX × RACE and SEX × AGE-Group as separate tb.

Lagrangian objective:
∑

a daG(wa
da

) +
∑d

b=1 γb
(∑M

a=1waHa,b− tb
)

Gradient equation: G′(wa/da) = (Hγ)a ⇒ wa = da·(G′)−1((Hγ)a)

In raking example (b): G′(z) = log z ⇒ wa = da e(Hγ)a

In surveys may have M ∼ 104, d ∼ 30; resulting weight-vector
w ∈ RM is parametric, loglinear with log da as offsets.
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Features of the IPF Algorithm

Key observation: if the algorithm converges, the only possible

limit satisfies the constraints (*)

So if convergence is shown, limit is unique fitted loglinear ML.

Sketch Proof of Convergence. Associate subvector βsub with

columns H·,b for b ∈ sub for single marginal factor (eg XZ).

Take gradient with respect to βsub of parametric −logLik.

∇βsub

M∑
a=1

{
e(Hβ)a − Ya(Hβ)a

}
=

M∑
a=1

Ha,sub (µa − Ya)
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Alternating Minimization and Raking

Setting this to 0 finds partial minimum (wrt βsub). Doing this

repeatedly (alternating minimization) converges to minimum of

convex objective function.

Each raking pass finds a unique partial minimum for the overall

convex −logLik

Each raking pass preserves the form logµa = (Hβ)a,

maps subvector βsub 7→ β
(∗)
sub = βsub + δsub

achieving constraint
∑M

a=1(Ya−exp((Hβ(∗))a)Ha,b = 0, b ∈ sub.
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Next Lecture – GLMs with Random Effects

This is material from Chapter 13, also see the Technical

Report & Handout linked at Handouts topic (1)(ii) on the

STAT 770 course web-page.

General framework: observations Ya,c now observed for

cells a in clusters c

P (Ya,c = y | ϵc) a GLM with predictors Xa,c, and

shared family, link and parameters β and offset ϵc,

where ϵc are iid cluster-effects, usually N (0, σ2e )
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