STAT 770 Nov. 16 Lecture 22
Iterative Proportional Fitting and Survey Raking

Reading and Topics for this lecture: Chapter 9 Sections 9.7.2-
9.7.4, Wikipedia article on “Raking”, web sources on “Alternat-
ing Minimization™.

(1) Iterative Proportional Fitting Algorithm (Deming & Stephan)
(2) Origin in Maximum Likelihood with Constrained Parameters
(3) Survey Weight-Adjustment with Calibration Conditions

(4) “Proof” of Convergence



Iterative Proportional Fitting (Sec.9.7.2-9.7.4)

Start with counts (summed weights, in survey contexts) MC(,,O)

a < (2,7,k,---) to be marginalized (some factor indices summed)

e restrict to example (i,j,k) in model (XZ, W)

e target counts Hyz4 = sz_|_, MUt = Y—I——|—w

e in iterative passes m > 0: hit targets exactly by multiplication
using respective factors fiz, fw

@m+1) _  (2m) Yij+ em+2) _  (2m+1) Y44k
Hijk — Pijk " " my 0+ Hijk — Pijk (2m+1)
Hij+ Httk

Convergence occurs under general conditions (usually quickly)
when all MC(LO) and marginals are positive



MLE in Loglinear Models

Recall:

e |loglinear models are natural exponential families with coeffi-
cients A< for included interactions appearing in logLik multi-
plying sufficient statistics Y,

e in natural exponential families, MLEs are Generalized Method
of Moments solutions of equations FE\(Ty) = T,. Thus the
(unique, if they exist) ML solutions have cell means pgzzw (M) sat-

isfying p,,4+ =Y, .4, etc.

o if H is the design matrix of dummy columns, then the
Poisson regression logLik to be maximized is

Y Yo (HB)a — > exp((HP)a)



Reformulation of the Minimization Problem

Using the information on the last slide:  MLE /3 solves
Loglinear ML Problem: min, —on((m8),) 2a {ua -Y, Iog(ua)}
subject to all u,,4+ =Y,,4, etc. (all terms like XZ in model)

Rewrite constraints: (*) M, (Yo —pa) Hyp =0, b=1,...,d

In the loglinear ML: rewrite objective function as
M

> {#a—1a109(pa) — (Ya = pa)(HB)a}

a=1

Under the constraint (*), last term drops out, and ML problem
IS equivalent to:

minua:exp((Hﬁ)a) Za {,ua — Ua Iog(,ua)} SUb_jeCt toO (*)
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Alternative Form of ML Problem

Alternative Problem: min,, >, {Ma — lg Iog(ua)}

over all ug > 0 subject to same constraints (*)

The restriction on parametric form of ug has been dropped. In
the loglinear ML problem the constraints were redundant; in the
2nd problem the assumption of loglinear form is redundant!

Assume that the marginals >, Yo H,; are all nonzero in what
follows, and also in the IPF/Raking iterations on first slide. Find
additional discussion of tables with sparseness and 0's in Agresti
Sec. 10.6.2.



Lagrange Multipliers for the Alternative Problem

Use Lagrange multipliers T € RY to define unconstrained problem

M
min 3" {ta — #al0g(ua) = (Ya — pa)(HT)a} (A)
= a=1

Setting V; = 0 just gives back the constraints (*)
Setting 9/0uq = 0  implies  log(ua) = (HT)a

T his shows the loglinear form is the only possible form for
the minimizer of the alternative problem, so the loglinear
ML problem is equivalent to it!

We also find: the Lagrange multipliers = are precisely the A\
log-linear-model coefficients (in which side-conditions prevent
redundant coefficients).



Generalized Problem — Survey Calibration

(Multi-way) table with cells a and aggregated design weights d,
(from units i collected in a survey cross-classified and found to
fall in cell ). Question: how to perturb these weights cell by cell
as little as possible to achieve weights so that for each of a set
of dummy columns {H,, a=1,...,M} indexed by b=1,...,d

() XM, waH,, =t, known totals, b=1,...,d
Formal Statement: miny Y>M ; dy G(wa/da) subject to (1)
where G(z) is a function with G(1) =0, G/(1) =0, G" > 0.

Examples: (a) G(z) = (z—1)2/2 linear calibration,
(b) G(z) =zlogz—z4+1 raking calibration

Deville and Sarndal 1992 Jour. Amer. Statist. Assoc.



Survey Calibration & Generalized Raking, cont’d

In contingency-table iid data setting, do, =Y, are the observed
counts, and t, = 224:1 wq H,p the desired marginal totals.

‘Marginal totals’ may overlap information about more than one
factor, e.g. SEX X RACE and SEX X AGE-Group as separate ty.

Lagrangian objective: >, dq G(Z—s) + Zg:l Y (Zy:l waHa,b—tb>
Gradient equation: G'(we/da) = (HY)a = wq = da-(G)"1((H7)a)
In raking example (b): G'(z) =logz = wq = dgelffVa

In surveys may have M ~ 10% d ~ 30; resulting weight-vector
w € RM is parametric, loglinear with logd, as offsets.



Features of the IPF Algorithm

Key observation: if the algorithm converges, the only possible
limit satisfies the constraints (*)

So if convergence is shown, limit is unique fitted loglinear ML.

Sketch Proof of Convergence. Associate subvector 3, with
columns H., for b € sub for single marginal factor (eg XZ).

Take gradient with respect to 3,,, of parametric —logLik.

M M
T 35 1 a0} = 35 a0

a=1



Alternating Minimization and Raking

Setting this to 0 finds partial minimum (wrt B,,;). Doing this
repeatedly (alternating minimization) converges to minimum of
convex objective function.

Each raking pass finds a unique partial minimum for the overall
convex —loglLik

Each raking pass preserves the form log e = (HB)a,
maps subvector B, — B(*) = Beub + 9sub

sub —

achieving constraint YM (Y, —exp((HB))a)H,p, = 0, b€ sub.

10



Next Lecture — GLMs with Random Effects

This is material from Chapter 13, also see the Technical
Report & Handout linked at Handouts topic (1)(ii) on the
STAT 770 course web-page.

General framework: observations Y, . now observed for

cells a in clusters ¢

P(Ya,c =y|ec) a GLM with predictors X, and
shared family, link and parameters 8 and offset ¢,

where e, are iid cluster-effects, usually AN(0, o2)
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