STAT 770 Nov. 18 Lecture 23
GLMs with Random (Intercept) Effects

Reading and Topics for this and next lecture: Chapter 13 Sec-
tions 13.1 — 13.3 and Handout 1(ii) from course web-page.

(1) Random effects model for clustered GLM data
(2) Matched Pairs as an Example of Clusters

(3) Other Examples of GLMMs — Binary outcome models,
Item-response models

(4) GLMM likelihood — cluster means, within-cluster
correlations, and predictors

(5) Strategies for ML and approximate ML calculation
next class



What is a GLMM 7

General form of GLMM with cluster-level random intercepts:
d
~ f(y|0;5, Xij,€;) = h(y) exp(bi;y —c(0;5)) , € R, 0)

VHC (ez]) — K5 — g_l(—’L] B+ €;)
1 =1,...,m indexes cluster, with cluster random-effect ¢;

73 =1,...,n; indexes observation within cluster 1,

conditionally iid given g;

e SR, 0 >0 parameters are shared across cluster

e ¢; a random cluster-specific offset



Examples

Idea: cluster combines observations with common experimental
setting

Examples: families, schools, clinical centers within which units
share some common unmodeled feature, modeled as independent
variate differing across cluster

If m were small and offsets ¢; of direct interest, they would
be viewed as non-random fixed-effect parameters.

Dimension of GLMM parameter (3,0) is p+1.
Model dimension with fixed effects = p 4+ m.




Additional Keywords for Models with Random Effects

Empirical Bayes Models: these GLMMs can be interpreted as
a way to fit/predict cluster predictive-scores X,gj B+ ¢; for individ-
ual (4,7): empirical because of the identical model relationships
across cluster, Bayes because of the independence of observa-
tions (identical within cluster) conditional on ‘prior’ effects ;.

Meta-Analysis: think of the clusters (eg clinical centers) as sep-
arate (small but not too tiny) studies; one might report estimates
B, \75r(BZ-) from those studies and analyze those as estimates of
common (3, with ¢; modeling differences between studies. GLMM
is what one would fit to the unified dataset if it were available.



Special Logistic Mixed Models

Logit-Normal Mixed-model:

Y;j ~ Binom(r;;, plogis(Xj; 8+ ¢)) given ¢, ¢ ~ N(0,02)

Binary Matched Pairs: n; =2, X,;; = z;

similarly, Litter-Studies or Family-studies

. . / — A.
dummy-column for factor with levels 5 =1,...,v, so X358 = 5;,

Rasch Item-Response Model: n; = v > 2, X;; = X; € R”

logit P(Y;; =1]¢;) = Bj+¢

g indexes study subject with skill-level 5;, ¢ item with difficulty e;
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Within-cluster Correlation

General Formula: var(W) = E(var(W|Z)) + var(E(W|Z))

Consequence: after using the formula for W = W1 4+ W»> and
W = W1 — W> and subtracting 2nd from 1st, dividing by 4:

cov(Wq,Ws) = E(COV(W]_,WQ | Z)) - cov(E(Wl 1 Z) - E(W5 | Z))

Fix cluster index i and X;;'s (by conditioning on them if random)
cov(Y;jy,Yijo) = E(cov(Yi . Vi, | €)) +cov(E(Y 4, | &) - E(Yijy | €))

= cov(E(Yi, ) - E(YVij,le)) >0

Next slide presents an argument why this inequality is true.

6



Proof of Positive Within-Cluster Correlation

This argument applies to scalar random-intercept GLMM with
g, ¢ strictly increasing.

o Y ~ f(y,0) = h(y) exp(8y — c(0)) is stochastically increasing
as function of 4, i.e. , for 81 < 6> and all y, F(y,01) > F(y,0>)

e Y is stochastically increasing in 6 if and only if Eg(h(Y))
in @ for any monotone increasing function h

Pf. for GLMM & [h(y)f(y,0)dy = [(y—c'(0))h(y)f(y,0)dy > O
because h(y) > h(c'(0) > h(z) whenever y > ' (0) > z.

o In GLMM, gi(¢;) = E(Y;l€) 7 in ¢ (varies with X,;;)

o cov = Elgj (e)gj(e)] — [Blgj(e)) - Blgjp(ei))]
= [ (gj,(t) — E(gj,(€)) gj,(#) fe(t)dt > O



Unit-level Prediction (Logit-Normal Model)

Fix 4,5, n = Xfmﬁ:
eltoz
1+ ento

P(Y;; = 1) = E(plogis(n +¢)) = $(z) dz

Remark. If X;; = X; depends only on i, not j,

e the displayed quantity is the inverse of a modified link-
function g} if o is fixed

e the last inequality on the previous slide is the Cauchy-
Schwarz inequality



GLMM Likelihood

Consider logit-normal model, and for simplicity restrict to case
where all Y;; are binary, and cluster ¢ has n; unit observations.

Then
PY; =y, 1<j<n;) = E(P(Yz‘,j =y, 1 <j<mny 67:))
- tr ni X B4ozy1—1

We will consider strategies for maximizing in 8,0 the sum of log’s
over ¢, mostly in the simpler case where all covariates X, ;=X
are at cluster level



Software Comments

glmer in R package 1lme4

PROC NLINMIX or GLIMMIX in SAS

EM, MCMC and Adaptive Gaussian Quadrature ideas for
logLik maximization
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