
STAT 770 Nov. 18 Lecture 23

GLMs with Random (Intercept) Effects

Reading and Topics for this and next lecture: Chapter 13 Sec-
tions 13.1 – 13.3 and Handout 1(ii) from course web-page.

(1) Random effects model for clustered GLM data

(2) Matched Pairs as an Example of Clusters

(3) Other Examples of GLMMs – Binary outcome models,

Item-response models

(4) GLMM likelihood – cluster means, within-cluster

correlations, and predictors

(5) Strategies for ML and approximate ML calculation

next class
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What is a GLMM ?

General form of GLMM with cluster-level random intercepts:

Yij ∼ f(y | θij, Xij, εi) = h(y) exp(θ′ijy − c(θij)) , εi
iid∼ F (·, σ)

∇θ c′(θij) = µij = g−1(X ′ij β + εi)

i = 1, . . . ,m indexes cluster, with cluster random-effect εi

j = 1, . . . , ni indexes observation within cluster i,

conditionally iid given εi

• β ∈ R, σ > 0 parameters are shared across cluster

• εi a random cluster-specific offset

2



Examples

Idea: cluster combines observations with common experimental

setting

Examples: families, schools, clinical centers within which units

share some common unmodeled feature, modeled as independent

variate differing across cluster

If m were small and offsets εi of direct interest, they would

be viewed as non-random fixed-effect parameters.

Dimension of GLMM parameter (β, σ) is p+1.

Model dimension with fixed effects = p+m.
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Additional Keywords for Models with Random Effects

Empirical Bayes Models: these GLMMs can be interpreted as

a way to fit/predict cluster predictive-scores X ′ij β + εi for individ-

ual (i, j): empirical because of the identical model relationships

across cluster, Bayes because of the independence of observa-

tions (identical within cluster) conditional on ‘prior’ effects εi.

Meta-Analysis: think of the clusters (eg clinical centers) as sep-

arate (small but not too tiny) studies; one might report estimates

β̂i, V̂ar(β̂i) from those studies and analyze those as estimates of

common β, with εi modeling differences between studies. GLMM

is what one would fit to the unified dataset if it were available.
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Special Logistic Mixed Models

Logit-Normal Mixed-model:

Yij ∼ Binom(rij, plogis(X ′ij β + εi)) given εi , εi ∼ N (0, σ2)

Binary Matched Pairs: ni ≡ 2, Xij = xi

similarly, Litter-Studies or Family-studies

Rasch Item-Response Model: ni ≡ ν ≥ 2, Xij = Xi ∈ Rν

dummy-column for factor with levels j = 1, . . . , ν, so X ′ijβ ≡ βj,

logit P (Yij = 1 | εi) = βj + εi

j indexes study subject with skill-level βj, i item with difficulty εi
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Within-cluster Correlation

General Formula: var(W ) = E(var(W |Z)) + var(E(W |Z))

Consequence: after using the formula for W = W1 + W2 and

W = W1 −W2 and subtracting 2nd from 1st, dividing by 4:

cov(W1,W2) = E
(
cov(W1,W2 |Z)

)
+ cov

(
E(W1 |Z) · E(W2 |Z)

)
Fix cluster index i and Xij’s (by conditioning on them if random)

cov(Yi,j1, Yi,j2) = E
(
cov(Yi,j1, Yi,j2 | εi)

)
+ cov

(
E(Yi,j1 | εi) ·E(Yi,j2 | εi)

)
= cov

(
E(Yi,j1 | εi) · E(Yi,j2 | εi)

)
> 0

Next slide presents an argument why this inequality is true.
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Proof of Positive Within-Cluster Correlation

This argument applies to scalar random-intercept GLMM with
g, c′ strictly increasing.

• Y ∼ f(y, θ) = h(y) exp(θy − c(θ)) is stochastically increasing
as function of θ, i.e. , for θ1 < θ2 and all y, F (y, θ1) ≥ F (y, θ2)

• Y is stochastically increasing in θ if and only if Eθ(h(Y )) ↗
in θ for any monotone increasing function h

Pf. for GLMM ∂
∂θ

∫
h(y)f(y, θ)dy =

∫
(y−c′(θ))h(y)f(y, θ)dy > 0

because h(y) > h(c′(θ) > h(z) whenever y > c′(θ) > z.

• In GLMM, gj(εi) ≡ E(Yi,j | εi) ↗ in εi (varies with Xij)

• cov = E
[
gj1(εi)gj2(εi)

]
−
[
E(gj1(εi)) · E(gj2(εi))

]
=
∫

(gj1(t)− E(gj1(εi)) gj2(t)fε(t)dt > 0

7



Unit-level Prediction (Logit-Normal Model)

Fix i, j, η = X ′i,j β:

P (Yij = 1) = E
(
plogis(η + εi)

)
=

∫
eη+σz

1 + eη+σz
φ(z) dz

Remark. If Xij = Xi depends only on i, not j,

• the displayed quantity is the inverse of a modified link-

function g∗σ if σ is fixed

• the last inequality on the previous slide is the Cauchy-

Schwarz inequality
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GLMM Likelihood

Consider logit-normal model, and for simplicity restrict to case

where all Yij are binary, and cluster i has ni unit observations.

Then

P (Yi,j = yj, 1 ≤ j ≤ ni) = E
(
P (Yi,j = yj, 1 ≤ j ≤ ni

∣∣∣ εi))

=
∫

exp
( ni∑
j=1

yj (Xtr
ij β + σz)

) [ ni∏
j=1

(1 + e
Xtr
ij β+σz

)
]−1

φ(z) dz

We will consider strategies for maximizing in β, σ the sum of log’s

over i, mostly in the simpler case where all covariates Xi,j = Xi

are at cluster level
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Software Comments

glmer in R package lme4

PROC NLINMIX or GLIMMIX in SAS

EM, MCMC and Adaptive Gaussian Quadrature ideas for

logLik maximization
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