STAT 770 Nov. 30 Lecture 25 R Calculations with GLMM

Reading and Topics for this lecture: Sections 13.1–13.6, and GLMMscript.RLog, under Handout 9.

(1) R Scripts (most of lecture)

(2) Logit-Normal Likelihood with Cluster-level Covariates

(3) Posterior Expectations in Logit-Normal Settings

(4) "Small Area Estimation" example (Table 13.2)

GLMM Likelihood

Consider logit-normal model, restricted to case where all Y_{ij} are binary, cluster *i* has n_i unit observations, and $\underline{X}_{ij} \equiv \underline{X}_i$.

Then

$$P(Y_{i,j} = y_j, \ 1 \le j \le n_i) = E\left(P(Y_{i,j} = y_j, \ 1 \le j \le n_i \ | \ \epsilon_i)\right)$$
$$= \int \exp\left(\sum_{j=1}^{n_i} y_j \left(\underline{X}_i^{tr} \ \beta + \sigma_z\right)\right) \left[\prod_{j=1}^{n_i} (1 + e^{\underline{X}_i^{tr} \ \beta + \sigma_z})\right]^{-1} \phi(z) \ dz$$

Last time we discussed strategies for maximizing in β , σ the sum of log's over *i*, mostly in the simpler case where all covariates $\underline{X}_{i,j} = \underline{X}_i$ are at cluster level.

logLik and Posterior Expectation

Restrict to cluster-level covariates, let Y_{i+} be cluster total. Then $Y_{i+} \sim \text{Binom}(n_i, \text{plogis}(\underline{X}_i^{tr} \beta + \epsilon_i)), \quad \epsilon_i / \sigma \sim \mathcal{N}(0, 1)$ Define $\eta_i = \underline{X}_i^{tr} \beta$, and

$$g(\eta,\sigma,k,n) = \int e^{(\eta+z\sigma)k} (1+e^{\eta+z\sigma})^{-n} \phi(z) dz$$

Then logLik_i = log $g(\eta_i, \sigma, Y_{i+}, n_i)$, and $E(\epsilon_i | Y_{i+} = k) = \int z\sigma e^{(\eta_i + z\sigma)k} (1 + e^{\eta_i + z\sigma})^{-n_i} \phi(z) dz / g(\eta_i, \sigma, k, n_i)$ (integrate by parts)

$$= \sigma \int \frac{d}{dz} \left[e^{(\eta_i + z\sigma)k} \left(1 + e^{\eta_i + z\sigma} \right)^{-n_i} \right] \phi(z) \, dz \, \Big/ \, g(\eta_i, \sigma, k, n_i)$$
$$= \sigma^2 \left(k - n_i \, g(\eta_i, \sigma, k+1, n_i+1) / g(\eta_i, \sigma, k, n_i) \right)$$

'Small Area Estimation: Empirical Bayes Model'

Here is a logit-normal 'area-level' Empirical Bayes Model:

$$Y_{i+} = \operatorname{Binom}(n_i, \operatorname{plogis}(\underline{X}_i^{tr} \beta + v_i))$$

 $Y_{i+} =$ aggregated total from a (weighted) survey sample $\underline{X}_i =$ vector of predictors for outcomes Y_{ij} in 'area' or cluster *i* Binom reflects random sampling outcomes $v_i =$ unmodeled random effect due to differences in areas **Target of inference:** $plogis(X_i^{tr} \beta + v_i)$

Typical predictors $\hat{\beta}$ MLE, \hat{v}_i posterior means for plug-in (as in Agresti); better would be posterior mean of $plogis(X_i^{tr}\beta + v_i)$ given Y_{i+} , at $\beta = \hat{\beta}$.