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To specify log-linear models, it helps to have two sets of notations and two ways of view-
ing the data structure for independent copies of a K-dimensional discrete random variable X =
(X1,...,Xk), where X; € {1,...,1;}. The dataset we envision consists of n iid copies X4, a =
1,...,n, of vectors of this type, exhibited as a tabular n x K discrete array X, = (Xq1,... Xo.K),

combined into a set of multinomial counts

Ny = Z [[Xazx} = Z I[Xa,j]:xj,jzl,...,K] (1)
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with cell probabilities
px = PX=x)=PX;=x5, j=1,...,K) (2)

The notations so far show the experimental-unit r.v.’s X, with values formed into a 2-dimensional
n X K array that could be put in a data-frame, while the aggregated multinomial counts Ny form
a K-way array with multi-index x of dimensions I; x Iy X --- X Ix. The multinomial counts also
could be put into the data-frame obtained by aggregating the n-vector of all 1’s with respect to the

values x of X,.

The background references we use for these definitions are, roughly, Bishop, Fienberg and
Holland (1975) and Agresti (2013, 3rd ed.), but the cumbersome notations needed for absolutely
general higher-order interactions are my own. Most treatments just create double or triple index

notations for interactions up to second or third order at most.

The specification of a log-linear contingency table model is an equation expressing log(px) as a
linear combination of separate coefficients for each of the subsets of the K-way multi-index x. To
make the specification clear, we need also a notation for ordered subsets (ji,...,J,) of dimension
indices, where all 1 < j; < jo < -+ < j < K, and r < r* < K denotes the order of interaction
described by the index subset. Then the loglinear model is
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subject to side-conditions (similar to those in linear-model theory) needed to ensure identifiability,

namely for all 1<r <7* and j= (ji,...,Jr),

forall k=1,...,r, o
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To keep track of the parameters, we need a list indxList of allowed combinations of r and

(J1,---,7r), and then a vector of real coefficients O[E — not necessarily satisfying the con-

ditions (4) — indexed in exactly the same order as th]é list] c)omponents. For each such parameter
6 consisting of p and (underdetermined) coefficients a'];IT, there exists a unique parameter whose
set of a coefficients satisfies (4). For each such (underdetermined) parameter § with unspecified
parameter, it is easy to compute the multi-way of right-hand sides of (3) without x and thereby the
multi-way array of px probabilities with unspecified multiplicative factor e#. Then u is determined

by renormalizing this probability array to sum to 1.

. verin rameter’s from
A. Recove Parameter’s fro 'S

If we had a complete array of px values, for all x € I} X Is X - - - X I, then the method of recovering

the parameters p, O[Ea: 25 functionally, subject to side-conditions (4), is fairly direct. First,
J1ooIr
for 1= (i1,i2,...,15) Cj= (J1,---,7r), define m(i,j) = H I,

t 1<t<r, jii

with m(j,j) = 1 by convention. Then by (3) and (4), u = 3, log(px)/ 1, I+, and for a fixed r
and j = (j1,-..Jr) and (yj,, ..., y;,) € Ljy X Ljy x - x I,

Z ]ngx = Z m(i,j) C!%yi17_“7yis) (5)
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applying (5) first with all singletons j = {j1}, then all doubletons j = {j1, j2}, then triplets, etc.

parameters can be extracted from the right-hand sides of (5), recursively, by

Remark 1 While this operation of mapping px to 0 is conceptually simple, it would be slightly

laborious to code. There must be an existing R package to do it. O

B. Recovering p, Arrays from Specified Marginals of p,’s

In many applications, the simplest way to specify a multi-way array of probabilities px would be
to draw a compatible set of marginal proportions pi, = . o=y ¥ kej Px from existing known
population-tables, and then create an array px of the form (3)-(4) with a minimal set of non-zero

parameters O_/J(x that has the specified marginals. Operationally, this would be done by

10T )
raking or Iterative Proportional Fitting, and is known to lead to a unique solution when all of the
specified marginal probabilities are non-zero, and in some other cases too (Winkler 1993; Fienberg

and Rinaldo 2007, 2012).



Here again, writing this down and coding it in full generality would be tedious. But in this
instance, there are effectively programmed R functions (e.g., calibrate in T. Lumley’s survey
package) to do raking for specified variables based on specified ‘target’ proportions. The data
structure is as follows. Start with the aggregated data-frame structure with one row for each x
combination, and each row also has the variables x1,...,z;, Nx. Now consider augmenting the
data-frame with one dummy column of 0’s and 1’s for the indicators of each categorical value ¢ for
each raking variable Z;, and assume for simplicity that all of the raking variables are functions of
the variables X7, ... Xk . For each such raking variable Z; (with corresponding iid observed values
Z,, for experimental units a = 1,2,...,n), denote by z(x) the value of Z,; whenever X, = x.
Then there will be an augmented column in the data-frame for each distinct categorical value ¢
for Z;, and the entry of that column in the x row of the data-frame will be I (x)—q. The set
of known ‘population totals’ for the corresponding augmented dummy column for Z; = c is the
population total N (arbitrary, because it will cancel out) times the proportion of the population
for which the raking variable Z; takes the value c. Although the calibrate function is written
with survey weights in mind, it does raking as envisioned when the weight vector w is specified to

have all entries 1.
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