Log-linear Model Specification

Eric Slud, UMD Math Dept and Census Bureau CSRM

To specify log-linear models, it helps to have two sets of notations and two ways of viewing the data structure for independent copies of a K-dimensional discrete random variable $\mathbf{X}=$ $\left(X_{1}, \ldots, X_{K}\right)$, where $X_{j} \in\left\{1, \ldots, I_{j}\right\}$. The dataset we envision consists of n iid copies $\mathbf{X}_{a}, a=$ $1, \ldots, n$, of vectors of this type, exhibited as a tabular $n \times K$ discrete array $\mathbf{X}_{a}=\left(X_{a, 1}, \ldots X_{a, K}\right)$, combined into a set of multinomial counts

$$
\begin{equation*}
N_{\mathbf{x}}=\sum_{a=1}^{n} I_{\left[\mathbf{X}_{a}=\mathbf{x}\right]}=\sum_{a=1}^{n} I_{\left[X_{a, j]}=x_{j}, j=1, \ldots, K\right]} \tag{1}
\end{equation*}
$$

with cell probabilities

$$
\begin{equation*}
p_{\mathbf{x}}=P(\mathbf{X}=\mathbf{x})=P\left(X_{j}=x_{j}, \quad j=1, \ldots, K\right) \tag{2}
\end{equation*}
$$

The notations so far show the experimental-unit r.v.'s \mathbf{X}_{a} with values formed into a 2-dimensional $n \times K$ array that could be put in a data-frame, while the aggregated multinomial counts $N_{\mathbf{x}}$ form a K-way array with multi-index \mathbf{x} of dimensions $I_{1} \times I_{2} \times \cdots \times I_{K}$. The multinomial counts also could be put into the data-frame obtained by aggregating the n -vector of all 1's with respect to the values \mathbf{x} of \mathbf{X}_{a}.

The background references we use for these definitions are, roughly, Bishop, Fienberg and Holland (1975) and Agresti (2013, 3rd ed.), but the cumbersome notations needed for absolutely general higher-order interactions are my own. Most treatments just create double or triple index notations for interactions up to second or third order at most.

The specification of a log-linear contingency table model is an equation expressing $\log \left(p_{\mathbf{x}}\right)$ as a linear combination of separate coefficients for each of the subsets of the K-way multi-index \mathbf{x}. To make the specification clear, we need also a notation for ordered subsets $\left(j_{1}, \ldots, j_{r}\right)$ of dimension indices, where all $1 \leq j_{1}<j_{2}<\cdots<j_{r} \leq K$, and $r \leq r^{*} \leq K$ denotes the order of interaction described by the index subset. Then the loglinear model is

$$
\begin{equation*}
\log p_{\mathbf{x}}=\log P\left(X_{j}=x_{j}, \quad j=1, \ldots, K\right)=\mu+\sum_{r=1}^{r^{*}} \sum_{\mathbf{j}=\left(j_{1}, \ldots, j_{r}\right)} \alpha_{\left(x_{j_{1}}, \ldots, x_{j_{r}}\right)}^{\mathbf{j}} \tag{3}
\end{equation*}
$$

subject to side-conditions (similar to those in linear-model theory) needed to ensure identifiability, namely for all $1 \leq r \leq r^{*}$ and $\mathbf{j}=\left(j_{1}, \ldots, j_{r}\right)$,

$$
\begin{equation*}
\text { for all } \quad k=1, \ldots, r, \quad \alpha_{\left(x_{j_{1}}, \ldots, x_{j_{k-1}},+, x_{j_{k+1}}, \ldots, x_{j_{r}}\right)}^{\mathbf{j}} \equiv \sum_{x_{j_{k}}=1}^{I_{j_{k}}} \alpha_{\left(x_{j_{1}}, \ldots, x_{j_{r}}\right)}^{\mathbf{j}}=0 \tag{4}
\end{equation*}
$$

To keep track of the parameters, we need a list indxList of allowed combinations of r and $\left(j_{1}, \ldots, j_{r}\right)$, and then a vector of real coefficients $\alpha_{\left(x_{j_{1}}, \ldots, x_{j_{r}}\right)}^{\mathbf{j}}$ - not necessarily satisfying the conditions (4) - indexed in exactly the same order as the list components. For each such parameter θ consisting of μ and (underdetermined) coefficients $\alpha_{\mathbf{x}_{r}}^{\mathbf{j}_{r}}$, there exists a unique parameter whose set of α coefficients satisfies (4). For each such (underdetermined) parameter θ with unspecified μ parameter, it is easy to compute the multi-way of right-hand sides of (3) without μ and thereby the multi-way array of $p_{\mathbf{x}}$ probabilities with unspecified multiplicative factor e^{μ}. Then μ is determined by renormalizing this probability array to sum to 1 .

A. Recovering Parameter's from p_{x} 's

If we had a complete array of $p_{\mathbf{x}}$ values, for all $\mathbf{x} \in I_{1} \times I_{2} \times \cdots \times I_{K}$, then the method of recovering the parameters $\mu, \alpha_{\left(x_{j_{1}}, \ldots, x_{j_{r}}\right)}^{\mathrm{j}}$ functionally, subject to side-conditions (4), is fairly direct. First,

$$
\text { for } \mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{s}\right) \subset \mathbf{j}=\left(j_{1}, \ldots, j_{r}\right), \quad \text { define } \quad m(\mathbf{i}, \mathbf{j})=\prod_{t: 1 \leq t \leq r, j_{t} \notin \mathbf{i}} I_{j_{t}}
$$

with $m(\mathbf{j}, \mathbf{j}) \equiv 1$ by convention. Then by (3) and (4), $\mu=\sum_{\mathbf{x}} \log \left(p_{\mathbf{x}}\right) / \prod_{t=1}^{K} I_{t}$, and for a fixed r and $\mathbf{j}=\left(j_{1}, \ldots j_{r}\right)$ and $\left(y_{j_{1}}, \ldots, y_{j_{r}}\right) \in I_{j_{1}} \times I_{j_{2}} \times \cdots \times I_{j_{r}}$,

$$
\begin{equation*}
\sum_{\mathbf{x}: x_{k}=y_{k} \forall k \in \mathbf{j}} \log p_{\mathbf{x}}=\sum_{\mathbf{i}: \mathbf{i} \subset \mathbf{j}} m(\mathbf{i}, \mathbf{j}) \alpha_{\left(y_{i_{1}}, \ldots, y_{i_{s}}\right)}^{\mathbf{i}} \tag{5}
\end{equation*}
$$

The $\alpha_{\left(y_{i_{1}}, \ldots, y_{i_{s}}\right)}^{\mathrm{i}}$ parameters can be extracted from the right-hand sides of (5), recursively, by applying (5) first with all singletons $\mathbf{j}=\left\{j_{1}\right\}$, then all doubletons $\mathbf{j}=\left\{j_{1}, j_{2}\right\}$, then triplets, etc.

Remark 1 While this operation of mapping $p_{\mathbf{x}}$ to θ is conceptually simple, it would be slightly laborious to code. There must be an existing R package to do it.

B. Recovering p_{x} Arrays from Specified Marginals of p_{x} 's

In many applications, the simplest way to specify a multi-way array of probabilities $p_{\mathbf{x}}$ would be to draw a compatible set of marginal proportions $p_{\mathbf{y}}^{\mathbf{i}}=\sum_{\mathbf{x}: x_{k}=y_{k} \forall k \in \mathbf{j}} p_{\mathbf{x}}$ from existing known population-tables, and then create an array $p_{\mathbf{x}}$ of the form (3)-(4) with a minimal set of non-zero parameters $\alpha_{\left(x_{j_{1}}, \ldots, x_{j_{r}}\right)}^{\mathbf{j}}$ that has the specified marginals. Operationally, this would be done by raking or Iterative Proportional Fitting, and is known to lead to a unique solution when all of the specified marginal probabilities are non-zero, and in some other cases too (Winkler 1993; Fienberg and Rinaldo 2007, 2012).

Here again, writing this down and coding it in full generality would be tedious. But in this instance, there are effectively programmed R functions (e.g., calibrate in T. Lumley's survey package) to do raking for specified variables based on specified 'target' proportions. The data structure is as follows. Start with the aggregated data-frame structure with one row for each \mathbf{x} combination, and each row also has the variables $x_{1}, \ldots, x_{k}, N_{\mathbf{x}}$. Now consider augmenting the data-frame with one dummy column of 0 's and 1's for the indicators of each categorical value c for each raking variable Z_{l}, and assume for simplicity that all of the raking variables are functions of the variables $X_{1}, \ldots X_{K}$. For each such raking variable Z_{l} (with corresponding iid observed values $Z_{a, l}$ for experimental units $\left.a=1,2, \ldots, n\right)$, denote by $z_{l}(\mathbf{x})$ the value of $Z_{a, l}$ whenever $\mathbf{X}_{a}=\mathbf{x}$. Then there will be an augmented column in the data-frame for each distinct categorical value c for Z_{l}, and the entry of that column in the \mathbf{x} row of the data-frame will be $I_{\left[z_{l}(\mathbf{x})=c\right] \text {. The set }}$. of known 'population totals' for the corresponding augmented dummy column for $Z_{l}=c$ is the population total N (arbitrary, because it will cancel out) times the proportion of the population for which the raking variable Z_{l} takes the value c. Although the calibrate function is written with survey weights in mind, it does raking as envisioned when the weight vector \mathbf{w} is specified to have all entries 1 .

References

Fienberg, S. and Rinaldo, A. (2007), Three centuries of categorical data analysis: Log-linear models and maximum likelihood estimation. Jour. Statist. Plann. Inference 137, 3430-3445.

Fienberg, S. and Rinaldo, A. (2012), Maximum likelihood estimation in log-linear models, $A n$ nals of Statistics bf 40, 996-1023.

Winkler, W. (1993). On Dykstra's iterative fitting procedure, Ann. Probab. 18, 1410-1415.

