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To specify log-linear models, it helps to have two sets of notations and two ways of view-

ing the data structure for independent copies of a K-dimensional discrete random variable X =

(X1, . . . , XK), where Xj ∈ {1, . . . , Ij}. The dataset we envision consists of n iid copies Xa, a =

1, . . . , n, of vectors of this type, exhibited as a tabular n×K discrete array Xa = (Xa,1, . . . Xa,K),

combined into a set of multinomial counts

Nx =
n∑

a=1

I[Xa=x] =
n∑

a=1

I[Xa,j]=xj , j=1,...,K] (1)

with cell probabilities

px = P (X = x) = P (Xj = xj , j = 1, . . . ,K) (2)

The notations so far show the experimental-unit r.v.’s Xa with values formed into a 2-dimensional

n×K array that could be put in a data-frame, while the aggregated multinomial counts Nx form

a K-way array with multi-index x of dimensions I1 × I2 × · · · × IK . The multinomial counts also

could be put into the data-frame obtained by aggregating the n-vector of all 1’s with respect to the

values x of Xa.

The background references we use for these definitions are, roughly, Bishop, Fienberg and

Holland (1975) and Agresti (2013, 3rd ed.), but the cumbersome notations needed for absolutely

general higher-order interactions are my own. Most treatments just create double or triple index

notations for interactions up to second or third order at most.

The specification of a log-linear contingency table model is an equation expressing log(px) as a

linear combination of separate coefficients for each of the subsets of the K-way multi-index x. To

make the specification clear, we need also a notation for ordered subsets (j1, . . . , jr) of dimension

indices, where all 1 ≤ j1 < j2 < · · · < jr ≤ K, and r ≤ r∗ ≤ K denotes the order of interaction

described by the index subset. Then the loglinear model is

log px = logP (Xj = xj , j = 1, . . . ,K) = µ+

r∗∑
r=1

∑
j=(j1,...,jr)

αj
(xj1

,...,xjr )
(3)

subject to side-conditions (similar to those in linear-model theory) needed to ensure identifiability,

namely for all 1 ≤ r ≤ r∗ and j = (j1, . . . , jr),

for all k = 1, . . . , r, αj
(xj1

,...,xjk−1
,+,xjk+1

,...,xjr )
≡

Ijk∑
xjk

=1

αj
(xj1

,...,xjr )
= 0 (4)
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To keep track of the parameters, we need a list indxList of allowed combinations of r and

(j1, . . . , jr), and then a vector of real coefficients αj
(xj1

,...,xjr )
– not necessarily satisfying the con-

ditions (4) – indexed in exactly the same order as the list components. For each such parameter

θ consisting of µ and (underdetermined) coefficients αjr
xr , there exists a unique parameter whose

set of α coefficients satisfies (4). For each such (underdetermined) parameter θ with unspecified µ

parameter, it is easy to compute the multi-way of right-hand sides of (3) without µ and thereby the

multi-way array of px probabilities with unspecified multiplicative factor eµ. Then µ is determined

by renormalizing this probability array to sum to 1.

A. Recovering Parameter’s from px’s

If we had a complete array of px values, for all x ∈ I1×I2×· · ·×IK , then the method of recovering

the parameters µ, αj
(xj1

,...,xjr )
functionally, subject to side-conditions (4), is fairly direct. First,

for i = (i1, i2, . . . , is) ⊂ j = (j1, . . . , jr), define m(i, j) =
∏

t: 1≤t≤r, jt /∈i

Ijt

with m(j, j) ≡ 1 by convention. Then by (3) and (4), µ =
∑

x log(px)/
∏K

t=1 It, and for a fixed r

and j = (j1, . . . jr) and (yj1 , . . . , yjr) ∈ Ij1 × Ij2 × · · · × Ijr ,∑
x: xk=yk ∀ k∈j

log px =
∑
i: i⊂j

m(i, j)αi
(yi1 ,...,yis )

(5)

The αi
(yi1 ,...,yis )

parameters can be extracted from the right-hand sides of (5), recursively, by

applying (5) first with all singletons j = {j1}, then all doubletons j = {j1, j2}, then triplets, etc.

Remark 1 While this operation of mapping px to θ is conceptually simple, it would be slightly

laborious to code. There must be an existing R package to do it. 2

B. Recovering px Arrays from Specified Marginals of px’s

In many applications, the simplest way to specify a multi-way array of probabilities px would be

to draw a compatible set of marginal proportions piy =
∑

x: xk=yk ∀ k∈j px from existing known

population-tables, and then create an array px of the form (3)-(4) with a minimal set of non-zero

parameters αj
(xj1

,...,xjr )
that has the specified marginals. Operationally, this would be done by

raking or Iterative Proportional Fitting, and is known to lead to a unique solution when all of the

specified marginal probabilities are non-zero, and in some other cases too (Winkler 1993; Fienberg

and Rinaldo 2007, 2012).
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Here again, writing this down and coding it in full generality would be tedious. But in this

instance, there are effectively programmed R functions (e.g., calibrate in T. Lumley’s survey

package) to do raking for specified variables based on specified ‘target’ proportions. The data

structure is as follows. Start with the aggregated data-frame structure with one row for each x

combination, and each row also has the variables x1, . . . , xk, Nx. Now consider augmenting the

data-frame with one dummy column of 0’s and 1’s for the indicators of each categorical value c for

each raking variable Zl, and assume for simplicity that all of the raking variables are functions of

the variables X1, . . . XK . For each such raking variable Zl (with corresponding iid observed values

Za,l for experimental units a = 1, 2, . . . , n), denote by zl(x) the value of Za,l whenever Xa = x.

Then there will be an augmented column in the data-frame for each distinct categorical value c

for Zl, and the entry of that column in the x row of the data-frame will be I[zl(x)=c]. The set

of known ‘population totals’ for the corresponding augmented dummy column for Zl = c is the

population total N (arbitrary, because it will cancel out) times the proportion of the population

for which the raking variable Zl takes the value c. Although the calibrate function is written

with survey weights in mind, it does raking as envisioned when the weight vector w is specified to

have all entries 1.
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