STAT 770 August 31 Lecture Part A Overview of Categorical Data Analysis

This lecture segment is an overview of data, models and formal setup we use under the heading of Categorical Data.

Reading for this week's lectures: Chap. 1 in Agresti's book, today in the 1st segment about kinds of data and basic models (Secs. 1.1, 1.2.1-1.2.3, 1.2.5), and in the 2nd segment using \mathbf{R} about a small dataset illustrating techniques for data display and some questions we can ask and answer using simple \mathbf{R} functions.

For this week's lectures, also see the historical material on contingency tables in **Ch. 16**, along with **Handouts 2 & 3** on the course web-page, respectively a link to a recorded lecture by Agresti about history and an article about how recent is the idea of analyzing cross-classified data in contingency tables.

Data and Models

Broadly, we will be studying Binomial and Multinomial count data, using parametric models to express occurrence probabilities in terms of parameter vectors θ and explanatory variables.

Data $(X_a, Z_a, a = 1, ..., n)$, *a* indexing experimental units $X_a \in C$ = discrete set of distinct **category** labels *c* $Z_a \in \mathbb{R}^d$ vector of **explanatory variables** (usually discrete) **Models** express $P(X_a = c, Z_a = z; \theta)$ or $P(X_a = c | Z_a = z; \theta)$

initially assume (X_a, Z_a) indep. identically distributed (*iid*)

 C, Z_a, θ defined to reflect structure connecting probabilities for different (c, z)

Generality of this Formulation

- (i) $C = \{0, 1\}$ or $\{\text{Failure, Success}\}$ or $T_a \in (b_j, b_{j+1}]$ X_a outcomes may be **ordinal** (ordered) or not $c = (x_1, \dots, x_r)$ may be **longitudinal, repeated measures**
- (ii) a = (i, j, k) may be multi-index, i, j, k indexing factor levels equivalently Z_a may contain (i, j, k) coordinates this is where multiway contingency tables come from

Next discuss data-frame versus contingency table data representations

Dummy Variables and Discrete Predictors

Suppose $C = \{1, ..., m\}$ and $n, \{Z_a\}_{a=1}^n$ nonrandom

Data-frame: rows $N_{z,c} = \sum_{a=1}^{n} I_{[Z_a=z, X_a=c]}, z, c$) with row-index enumerating (z, c)

Now suppose
$$Z_a = (Z_{j,a}, j = 1, ..., d) \in \mathbb{Z}$$

$$\equiv \{1, ..., I_1\} \times \cdots \times \{1, ..., I_d\}$$

 b^{th} Dummy Variable for Z_j : $(I_{[Z_{a,j}]} = b, a = 1, ..., n)$ column *n*-vector for each $j = 1, ..., d, b = 1, ..., I_j$ Use I_j *n*-vectors to account for categorical $Z_{j,a}$ in regression, but just 1 vector $\{Z_{j,a}\}_{a=1}^n$ for numerical predictor $Z_{j,a}$

Tabular Data: $N_{z,c}$ entries in *d*-way table indexed $z = (z_1, \ldots, z_d)$

Why Binomial and Multinomial ?

When Z_a are nonrandom: $N_{z,c} = \sum_{a=1}^{n} I_{[Z_a=z, X_a=c]} \sim \text{Binom}(n, p_{z,c})$ sum of iid binary r.v.'s, jointly distributed as Multinom $(n, \{p_{z,c}\}_{(z,c)})$ since each a belongs to only one $(z,c) = (Z_a, X_a)$, with prob. $p_{z,c}$.

Unconditional parameterization, where $\theta = \{p_{z,c}\}_{(z,c)}$ and $N_{z+} = \sum_{c \in C} N_{z,c}$ is a random outcome

Sometimes sample data (*stratified*) fixing $N_{z,+} \equiv n_z$, so that $(N_{z,c}, c \in C) \sim \text{Multinom}(n_z, \{p_{c|z}\}_{c \in C})$ where $p_{c|z} = P(X_a = c | Z_a = z) = p_{z,c} / \sum_{k \in C} p_{z,k}$ and $\theta = \{p_{c|z}\}_{(z,c) \in \mathbb{Z} \times C}$ is conditional parameterization

Parameter Spaces and Statistical Questions

In unconditional parameterization, Categorical Statistics is about Multinomial Data with parameters $\{p_{z,c}\}$: in interesting cases parameters are restricted/shared to reflect tabular and regression structure.

Examples: (a) $\log(p_{i,c}) = \alpha_c + \beta_i$ or $\log(p_{c|z}) = \alpha_c + \beta' z$ (b) multiway extensions, similar models with (z,c) interactions, (c) extensions reflecting longitudinal *c*'s, or other *link functions* relating $p_{z,c}$'s to $E(N_{z,c})$'s

Questions: Tests and Conf. Int's for parameter components, Predictons of $N_{z,c}$ (*Classification*)

Sampling Design, Conditioning & Poisson

Some extensions condition on Marginals, e.g. Fisher Exact Test fixes m_1, n_1, n in Multinomial

	X=0	1	Tot
Z=0	N ₀₀	N ₀₁	n_0
1	N_{01}	N_{11}	n_1
Tot	m_0	m_1	$\mid n$

Useful **distributional fact**: Multinom $(n, \{p_{z,c}\})$ dist'n for $\{N_{z,c}\}$ is equivalent to the conditional joint distribution of independent $N_{z,c} \sim \text{Poisson}(\lambda p_{z,c})$ r.v.'s given $\sum_{(z,c)} N_{z,c} = n$.

(A good self-contained exercise for review, not to be handed in.)

With this fact, conditioning in multinomial-data setting can be viewed as further conditioning on indep. Poisson underlying data.