STAT 770 August 31 Lecture Part A
Overview of Categorical Data Analysis

This lecture segment is an overview of data, models and formal
setup we use under the heading of Categorical Data.

Reading for this week’s lectures: Chap. 1 in Agresti's book,
today in the 1st segment about kinds of data and basic models
(Secs. 1.1, 1.2.1-1.2.3, 1.2.5), and in the 2nd segment using R
about a small dataset illustrating techniques for data display and
some questions we can ask and answer using simple R functions.

For this week's lectures, also see the historical material on
contingency tables in Ch. 16, along with Handouts 2 & 3
on the course web-page, respectively a link to a recorded lecture
by Agresti about history and an article about how recent is the
idea of analyzing cross-classified data in contingency tables.
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Data and Models

Broadly, we will be studying Binomial and Multinomial count
data, using parametric models to express occurrence probabilities
in terms of parameter vectors 6 and explanatory variables.

Data (X4,Zq, a=1,...,n), a indexing experimental units
Xq €l — discrete set of distinct category labels ¢

Z. € R vector of explanatory variables (usually discrete)

Models express P(Xqg=1c¢, Zg=12;0) or P(Xgq=c|Zq =2, 0)

initially assume (Xq, Z,) indep. identically distributed (iid)

C, Zq, 0 defined to reflect structure connecting probabilities
for different (c, z)



Generality of this Formulation

(i) ¢ ={0,1} or {Failure, Success} or Tg € (bj,b;41]

Xq outcomes may be ordinal (ordered) or not
c = (z1,...,zr) may be longitudinal, repeated measures

(i) a = (4,7,k) may be multi-index, 1,7, k indexing factor levels
equivalently Z; may contain (4,4,k) coordinates
this is where multiway contingency tables come from

Next discuss data-frame versus contingency table
data representations



Dummy Variables and Discrete Predictors
Suppose C = {1,...,m} and n, {Zg}!_,; nonrandom

Data-frame: rows Nc=3}_11[z,=. x,=c c)
with row-index enumerating (z,c)

Now suppose a=(Zjq, j=1,...,d) €2
E{l,...,]l}x---X{l,...,]d}

b Dummy Variable for Z;: (I

a

column n-vector foreach y=1,...,d, b=1,...,1;

Use I; n-vectors to account for categorical Z;, in regression,
but just 1 vector {Z; ,}7_, for numerical predictor Z; ,

j]=b, a=1,...,n)

Tabular Data: N, . entriesin d-way table indexed z = (21,...,24)
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Why Binomial and Multinomial 7

When Z, are nonrandom: Nz e = Y1_1 Iz, —. x,= ~ Binom(n,p.)
sum ofiid binary r.v.’s, jointly distributed as Multinom(n, {pz,c}(%c))
since each a belongs to only one (z,c¢) = (Za, Xa), With prob. p; c.

Unconditional parameterization, where 6 = {pzc}(, o
and N,4 = > .cc Nz, IS arandom outcome

Sometimes sample data (stratified) fixing N, 4+ =ngz, so that
(Nz.c, c€ C) ~ Multinom(ng, {pc\z}ceC’)
where pg, = P(Xa = c|Za = 2) = pz,c/ ZkeC P2k
and 0 = {p.,}(,c)czxc IS conditional parameterization
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Parameter Spaces and Statistical Questions

In unconditional parameterization, Categorical Statistics is about
Multinomial Data with parameters {p..}: in interesting cases

parameters are restricted/shared to reflect tabular and regression
structure.

Examples: (a) log(p;c) =ac+ B; or log(p.,) = ac+ Bz
(b) multiway extensions, similar models with (z,c¢) interactions,

(c) extensions reflecting longitudinal ¢'s, or other link functions
relating pz¢'s to E(N:.c)'S

Questions: Tests and Conf. Int's for parameter components,
Predictons of N, . (Classification)



Sampling Design, Conditioning & Poisson
Some extensions condition on >—0 >]<V:O Nl Tot
Marginals, e.g. Fisher Exact Test — 00 01] ™0
. . . . 1] No1 [ N11| m
fixes mq1,n1,n in Multinomial Tot

mg | mi n

Useful distributional fact: Multinom(n, {p:.}) dist'n for {N. .}
IS equivalent to the conditional joint distribution of independent
Nz,c ~ Poisson(Apz,c) r.v.'s given 35, .y Nzc=n.

(A good self-contained exercise for review, not to be handed in.)
With this fact, conditioning in multinomial-data setting can

be viewed as further conditioning on indep. Poisson under-
lying data.



