STAT 770 August 31 Lecture Part A
 Overview of Categorical Data Analysis

This lecture segment is an overview of data, models and formal setup we use under the heading of Categorical Data.

Reading for this week's lectures: Chap. 1 in Agresti's book, today in the 1st segment about kinds of data and basic models (Secs. 1.1, 1.2.1-1.2.3, 1.2.5), and in the $2 n d$ segment using \mathbf{R} about a small dataset illustrating techniques for data display and some questions we can ask and answer using simple \mathbf{R} functions.

For this week's lectures, also see the historical material on contingency tables in Ch. 16, along with Handouts 2 \& 3 on the course web-page, respectively a link to a recorded lecture by Agresti about history and an article about how recent is the idea of analyzing cross-classified data in contingency tables.

Data and Models

Broadly, we will be studying Binomial and Multinomial count data, using parametric models to express occurrence probabilities in terms of parameter vectors θ and explanatory variables.

Data $\left(X_{a}, Z_{a}, \quad a=1, \ldots, n\right), \quad a$ indexing experimental units
$X_{a} \in C=$ discrete set of distinct category labels c
$Z_{a} \in \mathbb{R}^{d}$ vector of explanatory variables (usually discrete)
Models express $P\left(X_{a}=c, Z_{a}=z ; \theta\right)$ or $P\left(X_{a}=c \mid Z_{a}=z ; \theta\right)$
initially assume (X_{a}, Z_{a}) indep. identically distributed (iid)
C, Z_{a}, θ defined to reflect structure connecting probabilities for different (c, z)

Generality of this Formulation

(i) $C=\{0,1\}$ or $\{$ Failure, Success $\}$ or $T_{a} \in\left(b_{j}, b_{j+1}\right]$ X_{a} outcomes may be ordinal (ordered) or not $c=\left(x_{1}, \ldots, x_{r}\right)$ may be longitudinal, repeated measures
(ii) $a=(i, j, k)$ may be multi-index, i, j, k indexing factor levels equivalently Z_{a} may contain (i, j, k) coordinates this is where multiway contingency tables come from

Next discuss data-frame versus contingency table data representations

Dummy Variables and Discrete Predictors

Suppose $C=\{1, \ldots, m\}$ and $n,\left\{Z_{a}\right\}_{a=1}^{n}$ nonrandom
Data-frame: rows $\left.N_{z, c}=\sum_{a=1}^{n} I_{\left[Z_{a}=z, X_{a}=c\right]}, z, c\right)$ with row-index enumerating (z, c)

Now suppose $Z_{a}=\left(Z_{j, a}, j=1, \ldots, d\right) \in \mathcal{Z}$

$$
\equiv\left\{1, \ldots, I_{1}\right\} \times \cdots \times\left\{1, \ldots, I_{d}\right\}
$$

$b^{t h}$ Dummy Variable for $Z_{j}: \quad\left(I_{\left[Z_{a, j}\right]}=b, a=1, \ldots, n\right)$
column n-vector for each $j=1, \ldots, d, b=1, \ldots, I_{j}$
Use $I_{j} n$-vectors to account for categorical $Z_{j, a}$ in regression, but just 1 vector $\left\{Z_{j, a}\right\}_{a=1}^{n}$ for numerical predictor $Z_{j, a}$

Tabular Data: $N_{z, c}$ entries in d-way table indexed $z=\left(z_{1}, \ldots, z_{d}\right)$

Why Binomial and Multinomial ?

When Z_{a} are nonrandom: $N_{z, c}=\sum_{a=1}^{n} I_{\left[Z_{a}=z, X_{a}=c\right]} \sim \operatorname{Binom}\left(n, p_{z, c}\right)$ sum of iid binary r.v.'s, jointly distributed as Multinom ($n,\left\{p_{z, c}\right\}_{(z, c)}$) since each a belongs to only one $(z, c)=\left(Z_{a}, X_{a}\right)$, with prob. $p_{z, c}$.

Unconditional parameterization, where $\theta=\left\{p_{z, c}\right\}_{(z, c)}$ and $N_{z+}=\sum_{c \in C} N_{z, c}$ is a random outcome

Sometimes sample data (stratified) fixing $N_{z,+} \equiv n_{z}$, so that $\left(N_{z, c}, c \in C\right) \sim \operatorname{Multinom}\left(n_{z},\left\{p_{c \mid z}\right\}_{c \in C}\right)$
where $p_{c \mid z}=P\left(X_{a}=c \mid Z_{a}=z\right)=p_{z, c} / \sum_{k \in C} p_{z, k}$
and $\theta=\left\{p_{c \mid z}\right\}_{(z, c) \in \mathcal{Z} \times C}$ is conditional parameterization

Parameter Spaces and Statistical Questions

In unconditional parameterization, Categorical Statistics is about Multinomial Data with parameters $\left\{p_{z, c}\right\}$: in interesting cases parameters are restricted/shared to reflect tabular and regression structure.

Examples: (a) $\log \left(p_{i, c}\right)=\alpha_{c}+\beta_{i}$ or $\log \left(p_{c \mid z}\right)=\alpha_{c}+\beta^{\prime} z$ (b) multiway extensions, similar models with (z, c) interactions, (c) extensions reflecting longitudinal c's, or other link functions relating $p_{z, c}$'s to $E\left(N_{z, c}\right)$'s

Questions: Tests and Conf. Int's for parameter components, Predictons of $N_{z, c}$ (Classification)

Sampling Design, Conditioning \& Poisson

Some extensions condition on Marginals, e.g. Fisher Exact Test fixes m_{1}, n_{1}, n in Multinomial

	$\mathrm{X}=0$	1	Tot
$\mathrm{Z}=0$	N_{00}	N_{01}	n_{0}
1	N_{01}	N_{11}	n_{1}
Tot	m_{0}	m_{1}	n

Useful distributional fact: Multinom($n,\left\{p_{z, c}\right\}$) dist' n for $\left\{N_{z, c}\right\}$ is equivalent to the conditional joint distribution of independent $N_{z, c} \sim \operatorname{Poisson}\left(\lambda p_{z, c}\right)$ r.v.'s given $\sum_{(z, c)} N_{z, c}=n$.
(A good self-contained exercise for review, not to be handed in.)
With this fact, conditioning in multinomial-data setting can be viewed as further conditioning on indep. Poisson underlying data.

