
STAT 770 August 31 Lecture Part A

Overview of Categorical Data Analysis

This lecture segment is an overview of data, models and formal
setup we use under the heading of Categorical Data.

Reading for this week’s lectures: Chap. 1 in Agresti’s book,
today in the 1st segment about kinds of data and basic models
(Secs. 1.1, 1.2.1-1.2.3, 1.2.5), and in the 2nd segment using R
about a small dataset illustrating techniques for data display and
some questions we can ask and answer using simple R functions.

For this week’s lectures, also see the historical material on
contingency tables in Ch. 16, along with Handouts 2 & 3
on the course web-page, respectively a link to a recorded lecture
by Agresti about history and an article about how recent is the
idea of analyzing cross-classified data in contingency tables.

1



Data and Models

Broadly, we will be studying Binomial and Multinomial count
data, using parametric models to express occurrence probabilities
in terms of parameter vectors θ and explanatory variables.

Data (Xa, Za, a = 1, . . . , n), a indexing experimental units

Xa ∈ C = discrete set of distinct category labels c

Za ∈ Rd vector of explanatory variables (usually discrete)

Models express P (Xa = c, Za = z ; θ) or P (Xa = c |Za = z ; θ)

initially assume (Xa, Za) indep. identically distributed (iid)

C, Za, θ defined to reflect structure connecting probabilities
for different (c, z)
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Generality of this Formulation

(i) C = {0,1} or {Failure, Success} or Ta ∈ (bj, bj+1]

Xa outcomes may be ordinal (ordered) or not

c = (x1, . . . , xr) may be longitudinal, repeated measures

(ii) a = (i, j, k) may be multi-index, i, j, k indexing factor levels

equivalently Za may contain (i, j, k) coordinates

this is where multiway contingency tables come from

Next discuss data-frame versus contingency table

data representations
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Dummy Variables and Discrete Predictors

Suppose C = {1, . . . ,m} and n, {Za}na=1 nonrandom

Data-frame: rows Nz,c =
∑n
a=1 I[Za=z,Xa=c], z, c)

with row-index enumerating (z, c)

Now suppose Za = (Zj,a, j = 1, . . . , d) ∈ Z
≡ {1, . . . , I1} × · · · × {1, . . . , Id}

bth Dummy Variable for Zj: (I[Za,j] = b, a = 1, . . . , n)

column n-vector for each j = 1, . . . , d, b = 1, . . . , Ij
Use Ij n-vectors to account for categorical Zj,a in regression,
but just 1 vector {Zj,a}na=1 for numerical predictor Zj,a

Tabular Data: Nz,c entries in d-way table indexed z = (z1, . . . , zd)
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Why Binomial and Multinomial ?

When Za are nonrandom: Nz,c =
∑n
a=1 I[Za=z,Xa=c] ∼ Binom(n, pz,c)

sum of iid binary r.v.’s, jointly distributed as Multinom(n, {pz,c}(z,c))

since each a belongs to only one (z, c) = (Za, Xa), with prob. pz,c.

Unconditional parameterization, where θ = {pz,c}(z,c)
and Nz+ =

∑
c∈C Nz,c is a random outcome

Sometimes sample data (stratified) fixing Nz,+ ≡ nz, so that

(Nz,c, c ∈ C) ∼Multinom(nz, {pc|z}c∈C)

where pc|z = P (Xa = c |Za = z) = pz,c/
∑
k∈C pz,k

and θ = {pc|z}(z,c)∈Z×C is conditional parameterization
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Parameter Spaces and Statistical Questions

In unconditional parameterization, Categorical Statistics is about

Multinomial Data with parameters {pz,c}: in interesting cases

parameters are restricted/shared to reflect tabular and regression

structure.

Examples: (a) log(pi,c) = αc + βi or log(pc|z) = αc + β′z

(b) multiway extensions, similar models with (z, c) interactions,

(c) extensions reflecting longitudinal c’s, or other link functions

relating pz,c’s to E(Nz,c)’s

Questions: Tests and Conf. Int’s for parameter components,

Predictons of Nz,c (Classification)
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Sampling Design, Conditioning & Poisson

Some extensions condition on

Marginals, e.g. Fisher Exact Test

fixes m1, n1, n in Multinomial

X=0 1 Tot
Z=0 N00 N01 n0

1 N01 N11 n1
Tot m0 m1 n

Useful distributional fact: Multinom(n, {pz,c}) dist’n for {Nz,c}
is equivalent to the conditional joint distribution of independent

Nz,c ∼ Poisson(λpz,c) r.v.’s given
∑

(z,c)Nz,c = n.

(A good self-contained exercise for review, not to be handed in.)

With this fact, conditioning in multinomial-data setting can

be viewed as further conditioning on indep. Poisson under-

lying data.
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