STAT 770 August 31 Lecture Part B Illustrative R Data Analysis of a Simple Table

We import a clinical trial dataset, transform it from data-frame to table, and use it to ask various simple hypothesis testing questions to be covered formally in Chaps. 1-2 of Agresti.

Reading: in addition to Ch. 1 contingency table definitions, begin with **R** 'Getting Started' material from course web-page.

Dummy Variables and Discrete Predictors

Suppose $C = \{1, ..., m\}$ and $n, \{Z_a\}_{a=1}^n$ nonrandom

Data-frame: rows $N_{z,c} = \sum_{a=1}^{n} I_{[Z_a=z, X_a=c]}, z, c)$ with row-index enumerating (z,c)

Now suppose $Z_a = (Z_{j,a}, j = 1, ..., d) \in \mathbb{Z} \equiv I_1 \times \cdots \times I_d$

 b^{th} Dummy Variable for Z_j : $(I_{[Z_{a,j}]} = b, a = 1, ..., n)$ column *n*-vector for each $j = 1, ..., d, b = 1, ..., I_j$ Use I_j *n*-vectors to account for categorical $Z_{j,a}$ in regression, but just 1 vector $\{Z_{j,a}\}_{a=1}^n$ for numerical predictor $Z_{j,a}$

Tabular Data: $N_{z,c}$ entries in *d*-way table indexed $z = (z_1, \ldots, z_d)$

Access multicenter clinical trial data (Table 6.9, Agresti) in R:

> t(inf	ect)	[,1:1:	2]	#1	# fir:	st 12	colur	nns of	f 16x4	l data	-frame	
	[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]	[,11]	[,12]
center	1	1	2	2	3	3	4	4	5	5	6	6
treat	1	0	1	0	1	0	1	0	1	0	1	0
у	11	10	16	22	14	7	2	1	6	0	1	0
n	36	37	20	32	19	19	16	17	17	12	11	10

"y" = treatmt resp = success, "treat" = indicator of experimental group
Data: treatmt ctr identifiers, & counts of successes & failures
"treat" is a "dummy column" for purpose of regression,
e.g. of y counts/(y+n counts) [or log, or logit] versus "treat"

Questions to Address in R Data Analysis

- association overall between y/n and treat
- variability across clusters (centers) of association
- can centers be ignored with respect to treatment efficacy

Further R Steps in File Rscript1.txt

Step 1. Chi-squared Test of Row-column indep. in 2×2 table

Obser	ved Ta	ble	Expec	Expected Table				
	Succ	Fail		Succ	Fail			
Drug	55	130	Drug	50.32	134.68			
Control	47	143	Control	51.68	138.32			

 $X^2 = \sum_{cell} \frac{(O-E)^2}{E}$ Corrected $= \sum_{cell} \frac{(|O-E|-0.5)^2}{E}$

Both referred to χ_1^2 table

With multiple (indep.) 2×2 tables can add their statistics and df. Other tests used if associations are likely in same direction.