STAT 770 Sep. 2 Lecture Part A
 Theory for Multinomial Likelihoods \& MLE's

Reading for today's lectures: Chap. 1 in Agresti's book, plus proofs in Ch. 16 on Asymptotics of MLE's, LRT's.

We review large-sample theory for MLEs and (in 2nd segment) LRTs for Multinomial Data and draw consequences for Tests and Confidence Intervals.

Start with Binomial \& Multinomial Distributions, then review MLE theory.

From Last Lecture: Why Binomial and Multinomial ?

When Z_{a} are nonrandom: $N_{z, c}=\sum_{a=1}^{n} I_{\left[Z_{a}=z, X_{a}=c\right]} \sim \operatorname{Binom}\left(n, p_{z, c}\right)$ sum of iid binary r.v.'s, jointly distributed as Multinom ($n,\left\{p_{z, c}\right\}_{(z, c)}$) since each a belongs to only one $(z, c)=\left(Z_{a}, X_{a}\right)$, with prob. $p_{z, c}$.

Unconditional parameterization, where $\theta=\left\{p_{z, c}\right\}_{(z, c)}$ and $N_{z+}=\sum_{c \in C} N_{z, c}$ is a random outcome

Sometimes sample data (stratified) fixing $N_{z,+} \equiv n_{z}$, so that $\left(N_{z, c}, c \in C\right) \sim \operatorname{Multinom}\left(n_{z},\left\{p_{c \mid z}\right\}_{c \in C}\right)$
where $\quad p_{c \mid z}=P\left(X_{a}=c \mid Z_{a}=z\right)=p_{z, c} / \sum_{k \in C} p_{z, k}$
and $\theta=\left\{p_{c \mid z}\right\}_{(z, c) \in \mathcal{Z} \times C}$ is conditional parameterization

Basic Definitions for Likelihood and MLE

For discrete observed data $\underline{Y}\left(\right.$ e.g. $=\left\{\left(X_{a}, Z_{a}\right)\right\}_{a=1}^{n}$ or $\left.\left\{X_{a}\right\}_{a=1}^{n}\right)$
and parametric prob. mass function $p(\underline{y}, \theta)=$
$\prod_{a=1}^{n} P\left(Z_{a}=z_{a}, X_{a}=c_{a} \mid \theta\right) \quad$ or $\quad \prod_{a=1}^{n} P\left(X_{a}=c_{a} \mid Z_{a}=z_{a}, \theta\right)$
Likelihood $\operatorname{Lik}(\theta ; \underline{Y})=p(\underline{Y}, \theta)$ as function of θ
and MLE $=\operatorname{argmax}_{\theta \in \Theta} \operatorname{Lik}(\theta, \underline{Y})$
often unique, e.g. when prob. mass has exponential family form

Multinomial Likelihood

n sample size, random iid $\left.\left(Z_{a}, X_{a}\right) \in \mathcal{Z} \times C=\mathcal{K}\right)$
$X_{a} \in C$ indep. $, p_{z, c}=P\left(Z_{a}=z, X_{a}=c\right),(z, c) \in \mathcal{K}$
Reduced Data: $N_{z, c}=\sum_{a=1}^{n} I_{\left[Z_{a}=z, X_{a}=c\right]}, \quad(z, c) \in \mathcal{K}$
Likelihood for (ordered) unit-level data: $\prod_{a=1}^{n} p_{z_{a}, c_{a}}^{I\left[Z_{a}=z_{a}, X_{a}=c_{a}\right]}$
Likelihood $L(\theta) \equiv L(\theta ; \underline{N})$ for Multinomial $\left\{N_{z, c}\right\}$ data:

$$
\left(\stackrel{n}{N_{z, c},(z, c) \in \mathcal{K}}\right) \Pi_{(z, c) \in \mathcal{K}} p_{z, c}^{N_{z, c}}=n!\Pi_{(z, c) \in \mathcal{K}}\left(p_{z, c}^{N_{z, c}} /\left(N_{z, c}\right)!\right)
$$

Other Forms of Same Likelihood

However the parameters $\theta=\left(p_{z, c},(z, c) \in \mathcal{K}\right)$ are restricted, the previous 2 likelihoods are proportional, up to factors not depending on θ.

If Z_{a} variables are fixed along with $n_{z}=N_{z,+}$ and $p_{z,+}$, and X_{a} are indep. with $P\left(X_{a}=c \mid Z_{a}=z\right)=p_{c \mid z}=p_{z, c} / p_{z,+}$ then the Likelihood for $\theta^{\prime}=\left\{p_{c \mid z}\right\}$ is again proportional, $=$

$$
\prod_{z \in \mathcal{Z}}\left(n_{z}!\prod_{c \in C}\left[p_{c \mid z}^{N_{z, c}} /\left(N_{z, c}\right)!\right]\right)=\prod_{z \in \mathcal{Z}}\left(\frac{n_{z}!}{p_{z+}^{p_{z}^{z}}} \prod_{c \in C} \frac{p_{z, c}^{N_{z, c}}}{\left(N_{z, c}\right)!}\right)
$$

Sampling Design, Conditioning \& Poisson

Some extensions condition on Marginals, e.g. Fisher Exact Test fixes m_{1}, n_{1}, n in Multinomial

	$\mathrm{X}=0$	1	Tot
$\mathrm{Z}=0$	N_{00}	N_{01}	n_{0}
1	N_{10}	N_{11}	n_{1}
Tot	m_{0}	m_{1}	n

Useful distributional fact: Multinom($n,\left\{p_{z, c}\right\}$) dist' n for $\left\{N_{z, c}\right\}$ is identical to the conditional joint distribution of independent $N_{z, c} \sim \operatorname{Poisson}\left(\lambda p_{z, c}\right)$ r.v.'s given $\sum_{(z, c)} N_{z, c}=n$.
(A good self-contained exercise for review, not to be handed in.)
With this fact, conditioning in multinomial-data setting can be viewed as further conditioning on indep. Poisson underlying data.

Parameter Spaces and Statistical Questions

In unconditional parameterization, Categorical Statistics is about Multinomial Data with parameters $\left\{p_{z, c}\right\}$: in interesting cases parameters are restricted/shared to reflect tabular and regression structure.

Examples: (a) $\log \left(p_{i, c}\right)=\alpha_{c}+\beta_{i}$ or $\log \left(p_{c \mid z}\right)=\alpha_{c}+\beta^{\prime} z$
(b) multiway extensions, similar models with (z, c) interactions, (c) extensions reflecting longitudinal c's, or other link functions relating $p_{z, c}$'s to $E\left(N_{z, c}\right)$'s

Questions: Tests and Conf. Int's for parameter components, Predictons of $N_{z, c}$ (Classification)

Review: MLE Theory, Sec. 16.2

Collapse $(z, c)=k \in \mathcal{K}$, assume data probabilities $\theta=\left\{p_{z, c}\right\}=$ $\left\{p_{k}\right\}_{k \in \mathcal{K}}$ are >0 twice continuously differentiable functions of lower-dimensional parameter β in an open subset $\mathcal{U} \subset \mathbb{R}^{d}$ and $|\mathcal{K}| \times d$ matrix $\mathcal{J} \equiv\left(\frac{\partial \theta_{k}}{\partial \beta_{j}}\right)$ has full rank d, then for large n
with probability $\rightarrow 1$ a consistent MLE $\widehat{\beta}$ [a local maximizer of locally concave) $\log L(\theta(\beta))$] exists and is unique on a sufficiently small neighborhood of the 'true' parameter β_{0}, and
$\sqrt{n}\left(\widehat{\beta}-\beta_{0}\right)$ is asymptotically normally distributed with nonsingular variance matrix $V\left(\beta_{0}\right)$ about which we will say more later.

Note: there is a unique local solution $\widetilde{\beta}$ of $\theta(\beta)=\left\{N_{k} / n\right\}_{k \in \mathcal{K}}$, and $\sqrt{n}(\widehat{\beta}-\widetilde{\beta}) \approx V \sqrt{n} \nabla_{\beta} \log L(\underline{N} / n)$ in probability.

Three Classic Examples

(I) Binomial Proportion $X_{a} \sim \operatorname{Bernoulli}(p), C=\{0,1\}, \beta=p$ $\theta=(p, 1-p)$
$N_{1}=\sum_{a=1}^{n} X_{a} \sim \operatorname{Binom}(n, p), \quad L(\theta) \propto p^{N_{1}}(1-p)^{n-N_{1}}, \quad \widehat{p}=N_{1} / n$
(II) Comparing Two Proportions. $X_{a}, Z_{a} \in\{0,1\}$ fixed.
$P\left(X_{a}=1 \mid Z_{a}=z, \theta\right)=\pi_{z}, z=0,1, \quad \theta=\left(\pi_{0}, 1-\pi_{0}, \pi_{1}, 1-\pi_{1}\right)$
$L(\theta) \propto \prod_{z=0}^{1} \pi_{z}^{N_{z, 1}}\left(1-\pi_{z}\right)^{N_{z, 0}}, \quad$ MLEs $\hat{\pi}_{z}=\left(N_{z, 1} / N_{z,+}, \quad z=0,1\right)$
(III) Multinomial Goodness of Fit. $\quad X_{a} \in C=\{1, \ldots, K\}$
$\pi_{k}=P\left(X_{a}=k \mid \theta\right), \quad \theta=\left(\pi_{k}, k=1, \ldots, K\right), \quad \widehat{\pi}_{k}=N_{k} / n$
Statistical tests and CIs based on $\hat{\theta}$ and Likelihood Ratio Tests

