
STAT 770 Sep. 2 Lecture Part A

Theory for Multinomial Likelihoods & MLE’s

Reading for today’s lectures: Chap. 1 in Agresti’s book, plus

proofs in Ch. 16 on Asymptotics of MLE’s, LRT’s.

We review large-sample theory for MLEs and (in 2nd segment)

LRTs for Multinomial Data and draw consequences for Tests

and Confidence Intervals.

Start with Binomial & Multinomial Distributions, then review

MLE theory.
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From Last Lecture: Why Binomial and Multinomial ?

When Za are nonrandom: Nz,c =
∑n
a=1 I[Za=z,Xa=c] ∼ Binom(n, pz,c)

sum of iid binary r.v.’s, jointly distributed as Multinom(n, {pz,c}(z,c))

since each a belongs to only one (z, c) = (Za, Xa), with prob. pz,c.

Unconditional parameterization, where θ = {pz,c}(z,c)
and Nz+ =

∑
c∈C Nz,c is a random outcome

Sometimes sample data (stratified) fixing Nz,+ ≡ nz, so that

(Nz,c, c ∈ C) ∼Multinom(nz, {pc|z}c∈C)

where pc|z = P (Xa = c |Za = z) = pz,c/
∑
k∈C pz,k

and θ = {pc|z}(z,c)∈Z×C is conditional parameterization
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Basic Definitions for Likelihood and MLE

For discrete observed data Y (e.g. = {(Xa, Za)}na=1 or {Xa}na=1)

and parametric prob. mass function p(y, θ) =∏n
a=1 P (Za = za, Xa = ca | θ) or

∏n
a=1 P (Xa = ca |Za = za, θ)

Likelihood Lik(θ; Y ) = p(Y , θ) as function of θ

and MLE = argmaxθ∈Θ Lik(θ, Y )

often unique, e.g. when prob. mass has exponential family form
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Multinomial Likelihood

n sample size, random iid (Za, Xa) ∈ Z × C = K)

Xa ∈ C indep., pz,c = P (Za = z, Xa = c) , (z, c) ∈ K

Reduced Data: Nz,c =
∑n
a=1 I[Za=z,Xa=c] , (z, c) ∈ K

Likelihood for (ordered) unit-level data:
∏n
a=1 p

I[Za=za,Xa=ca]
za,ca

Likelihood L(θ) ≡ L(θ;N) for Multinomial {Nz,c} data:(
n

Nz,c, (z,c)∈K
) ∏

(z,c)∈K p
Nz,c
z,c = n!

∏
(z,c)∈K

(
p
Nz,c
z,c

/
(Nz,c)!

)
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Other Forms of Same Likelihood

However the parameters θ = (pz,c, (z, c) ∈ K) are restricted,

the previous 2 likelihoods are proportional, up to factors not

depending on θ.

If Za variables are fixed along with nz = Nz,+ and pz,+ , and

Xa are indep. with P (Xa = c |Za = z) = pc|z = pz,c/pz,+

then the Likelihood for θ′ = {pc|z} is again proportional, =

∏
z∈Z

(
nz!

∏
c∈C

[
p
Nz,c
c|z

/
(Nz,c)!

])
=

∏
z∈Z

(
nz!

pnzz+

∏
c∈C

p
Nz,c
z,c

(Nz,c)!

)
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Sampling Design, Conditioning & Poisson

Some extensions condition on

Marginals, e.g. Fisher Exact Test

fixes m1, n1, n in Multinomial

X=0 1 Tot
Z=0 N00 N01 n0

1 N10 N11 n1
Tot m0 m1 n

Useful distributional fact: Multinom(n, {pz,c}) dist’n for {Nz,c}
is identical to the conditional joint distribution of independent

Nz,c ∼ Poisson(λpz,c) r.v.’s given
∑

(z,c)Nz,c = n.

(A good self-contained exercise for review, not to be handed in.)

With this fact, conditioning in multinomial-data setting

can be viewed as further conditioning on indep. Poisson

underlying data.
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Parameter Spaces and Statistical Questions

In unconditional parameterization, Categorical Statistics is about

Multinomial Data with parameters {pz,c}: in interesting cases

parameters are restricted/shared to reflect tabular and regression

structure.

Examples: (a) log(pi,c) = αc + βi or log(pc|z) = αc + β′z

(b) multiway extensions, similar models with (z, c) interactions,

(c) extensions reflecting longitudinal c’s, or other link functions

relating pz,c’s to E(Nz,c)’s

Questions: Tests and Conf. Int’s for parameter components,

Predictons of Nz,c (Classification)
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Review: MLE Theory, Sec. 16.2

Collapse (z, c) = k ∈ K, assume data probabilities θ = {pz,c} =
{pk}k∈K are > 0 twice continuously differentiable functions of
lower-dimensional parameter β in an open subset U ⊂ Rd

and |K| × d matrix J ≡ (∂θk∂βj
) has full rank d, then for large n

with probability → 1 a consistent MLE β̂ [ a local maximizer
of locally concave) logL( θ(β) ) ] exists and is unique on a suf-
ficiently small neighborhood of the ‘true’ parameter β0, and

√
n (β̂ − β0) is asymptotically normally distributed with nonsin-

gular variance matrix V (β0) about which we will say more later.

Note: there is a unique local solution β̃ of θ(β) = {Nk/n}k∈K,
and

√
n(β̂ − β̃) ≈ V

√
n∇β logL(N/n) in probability.
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Three Classic Examples

(I) Binomial Proportion Xa ∼ Bernoulli(p), C = {0,1}, β = p

θ = (p,1− p)

N1 =
∑n
a=1Xa ∼ Binom(n, p), L(θ) ∝ pN1(1− p)n−N1, p̂ = N1/n

(II) Comparing Two Proportions. Xa, Za ∈ {0,1} fixed.

P (Xa = 1 |Za = z, θ) = πz, z = 0,1, θ = (π0,1− π0, π1,1− π1)

L(θ) ∝
∏1
z=0 π

Nz,1
z (1−πz)Nz,0, MLEs π̂z = (Nz,1/Nz,+, z = 0,1)

(III) Multinomial Goodness of Fit. Xa ∈ C = {1, . . . ,K}
πk = P (Xa = k | θ), θ = (πk, k = 1, . . . ,K), π̂k = Nk/n

Statistical tests and CIs based on θ̂ and Likelihood Ratio Tests
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