STAT 770 Sep. 2 Lecture Part B Forms of Tests and CIs for Multinomials

Lecture part A introduced MLEs in Binom & Multinom Examples

Recall in **Binomial Case**: $\hat{\theta} = N_1/n \approx \mathcal{N}(p, \frac{p(1-p)}{n})$

Multinomial Case:
$$\hat{\theta} = \begin{pmatrix} \hat{\pi}_1 \\ \vdots \\ \hat{\pi}_K \end{pmatrix} = \begin{pmatrix} \frac{1}{n} \sum_{a=1}^n I_{[X_a=k]}, \ 1 \le k \le n \end{pmatrix}$$

 $\stackrel{\mathcal{D}}{\approx} \mathcal{N} \Big(\theta, \ n^{-1} \Big\{ \text{Diag}(\theta) - \theta \theta^{tr} \Big\} \Big)$ by Multivariate CLT
because $E(I_{[X_a=k]}) = \pi_k, \qquad E(I_{[X_a=k]}I_{[X_a=j]}) = \pi_k I_{[k=j]}$

Three Classic Examples

(I) Binomial Proportion $X_a \sim \text{Bernoulli}(p), C = \{0, 1\}, \beta = p$ $\theta = (p, 1 - p)$

$$N_1 = \sum_{a=1}^n X_a \sim \text{Binom}(n,p), \ L(\theta) \propto p^{N_1} (1-p)^{n-N_1}, \ \hat{p} = N_1/n$$

(II) Comparing Two Proportions. $X_a, Z_a \in \{0, 1\}$ fixed. $P(X_a = 1 | Z_a = z, \theta) = \pi_z, z = 0, 1, \quad \theta = (\pi_0, 1 - \pi_0, \pi_1, 1 - \pi_1)$ $L(\theta) \propto \prod_{z=0}^{1} \pi_z^{N_{z,1}} (1 - \pi_z)^{N_{z,0}}, \quad \text{MLEs} \ \hat{\pi}_z = (N_{z,1}/N_{z,+}, z = 0, 1)$

(III) Multinomial Goodness of Fit. $X_a \in C = \{1, \dots, K\}$ $\pi_k = P(X_a = k | \theta), \quad \theta = (\pi_k, k = 1, \dots, K), \quad \hat{\pi}_k = N_k/n$

Statistical tests and CIs based on $\hat{\theta}$ and Likelihood Ratio Tests

Three Classic Forms of Hypothesis Tests

Setting: $\underline{Y} = \{(X_a, Z_a)\}$ iid. or $\{X_a\}$ indep & Z_a fixed Model: $p(\underline{y}, \theta)$ prob. mass function, $\theta = \theta(\beta), \beta \in U \subset \mathbb{R}^d$ $(d \leq K - 1$ in multinomial examples)

Null Hypothesis: $H_0: \beta = (\gamma_0, \lambda), \ \gamma \in \mathbb{R}^q, \ \lambda \in \mathbb{R}^{d-q}, \ q \leq d$

Wald Test based on $\hat{\gamma} - \gamma_0$ within $\hat{\beta} \stackrel{\mathcal{D}}{\approx} \mathcal{N}(\beta, V(\hat{\beta})/n)$ Score Test (q = d) using $\nabla_{\beta} \log p(\underline{Y}, \theta_0) \stackrel{\mathcal{D}}{\approx} \mathcal{N}(0, n (V(\beta_0))^{-1})$ LR Test (q = d) based on $\Lambda = -2 \log \left(L(\theta_0)/L(\hat{\theta}) \right) \stackrel{\mathcal{D}}{\approx} \chi_d^2$

More general q < d versions of Score & LRT replace θ_0 in statistic by $\hat{\theta}_r$, where r means restricted subject to $\gamma = \beta_0$ Tests of H_0 : $\beta = p = p_0$ in Binomial Case ($\theta = (p, 1 - p), \beta = p$)

No Z_a's, $X_a \sim \text{Bernoulli}(p), \ \hat{p} = N_1/n \sim \mathcal{N}(p, p(1-p)/n)$

(2-sided) Wald Test rejects when $|\hat{p}-p_0| \ge \Phi^{-1}(1-\alpha/2) \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$ or equivalently, when $\frac{n(\hat{p}-p_0)^2}{\hat{p}(1-\hat{p})} = \frac{(N_1-np_0)^2}{N_1(1-N_1/n)} \ge \chi^2_{1,\alpha}$

Since
$$\nabla_p \log L(\theta, \underline{Y}) = \frac{N_1}{\theta} - \frac{n - N_1}{1 - \theta} = \frac{N_1 - np}{p(1 - p)} \sim \mathcal{N}\left(0, \frac{n}{p(1 - p)}\right)$$

Score Test rejects when $\frac{(N_1 - np_0)^2}{np_0(1 - p_0)} \ge \chi_{1,\alpha}^2$
LRT rejects when $2 \cdot \log\left(N_1 \log(\frac{\hat{p}}{p_0}) + (n - N_1) \log(\frac{1 - \hat{p}}{1 - p_0})\right) \ge \chi_{1,\alpha}^2$

Confidence Intervals Related to Tests, d = 1

Generally with test statistic T a monotonic function of centered standardized estimate $|\tilde{\beta} - \beta_0|$ (in 2-sided testing), tests $T \ge c_{\alpha}$ suggest Confidence Interval: $|\tilde{\beta} - \theta_0| \le \Phi^{-1}(1 - \alpha/2) \,\widehat{se}(\tilde{\beta})$

Inverted-Test CI defined differently, with $T = T(\beta_0)$ notationally linked to H_0 parameter, as $\{\beta \in \mathbb{R}^d : T(\beta) < c_\alpha\}$

Both CI ideas are based on reference distribution for $T(\beta)$ valid when data satisfy model with parameter β .

Need not be related to normal or symmetric d.f. , can instead use $\alpha/2$, $1 - \alpha/2$ quantiles for $\tilde{\beta}$.

Confidence Intervals for p in Binomial Case

Wald:
$$\{p: (\hat{p}-p)^2 \leq \chi_{1,\alpha}^2 \cdot \frac{\hat{p}(1-\hat{p})}{n}\} = \hat{p} \pm \Phi^{-1}(1-\alpha/2) \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$$

Score = Wilson, (inverted): $\{p: (\hat{p}-p)^2 \leq \chi_{1,\alpha}^2 \cdot \frac{p(1-p)}{n}\}$
(solve quadratic in p : interval approximated by Agresti-Coull
interval which is Wald with $n \mapsto n+2, N_1 \mapsto N_1 + 1$)
LRT (inverted): $\{p: 2n \log \left(\hat{p} \log(\frac{\hat{p}}{p}) + (1-\hat{p}) \log(\frac{1-\hat{p}}{1-p})\right) \leq \chi_{1,\alpha}^2\}$

Clopper-Pearson $[p_L, p_U]$ (which is very conservative) inverts exact one-sided binomial tails tests such that

$$pbinom(N_1, n, p_U) = \alpha/2 = 1 - pbinom(N_1 - 1, n, p_L)$$

Issue in Sec. 1.4.2, 16.6.1 and Exercise (A): the common Wald CI has poor (low) coverage, bad for surprisingly large n !!

Remarks about Moderate Sample-Size Behavior

(1) Part of the problem is the granularity of the discrete binomial for moderate n, as shown by the n = 100 picture on the Course web-page comparing coverage of the Wald, Wilson, and Clopper-Pearson CI's.

(2) Related issue is **Yates Continuity Correction:** binomial $N_1 \sim \text{Binom}(n,p)$ could be said to assign probability dbinom(k,n,p) to interval (k-1/2, k+1/2), so normal approx should assign $P(N_1 \ge k) \approx 1 - \Phi((k-0.5-np)/\sqrt{np(1-p)})$ when $k \ge np+1$.