STAT 770 Sep. 2 Lecture Part B Forms of Tests and CIs for Multinomials

Lecture part A introduced MLEs in Binom \& Multinom Examples
Recall in Binomial Case: $\quad \hat{\theta}=N_{1} / n \stackrel{\mathcal{D}}{\sim} \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$
Multinomial Case: $\quad \hat{\theta}=\left(\begin{array}{c}\hat{\pi}_{1} \\ \vdots \\ \hat{\pi}_{K}\end{array}\right)=\left(\frac{1}{n} \sum_{a=1}^{n} I_{\left[X_{a}=k\right]}, 1 \leq k \leq n\right)$

$$
\stackrel{\mathcal{D}}{\approx} \mathcal{N}\left(\theta, n^{-1}\left\{\operatorname{Diag}(\theta)-\theta \theta^{\operatorname{tr}}\right\}\right) \quad \text { by Multivariate CLT }
$$

because $E\left(I_{\left[X_{a}=k\right]}\right)=\pi_{k}, \quad E\left(I_{\left[X_{a}=k\right]} I_{\left[X_{a}=j\right]}\right)=\pi_{k} I_{[k=j]}$

Three Classic Examples

(I) Binomial Proportion $X_{a} \sim \operatorname{Bernoulli}(p), C=\{0,1\}, \beta=p$ $\theta=(p, 1-p)$
$N_{1}=\sum_{a=1}^{n} X_{a} \sim \operatorname{Binom}(n, p), \quad L(\theta) \propto p^{N_{1}}(1-p)^{n-N_{1}}, \quad \widehat{p}=N_{1} / n$
(II) Comparing Two Proportions. $X_{a}, Z_{a} \in\{0,1\}$ fixed.
$P\left(X_{a}=1 \mid Z_{a}=z, \theta\right)=\pi_{z}, z=0,1, \quad \theta=\left(\pi_{0}, 1-\pi_{0}, \pi_{1}, 1-\pi_{1}\right)$
$L(\theta) \propto \prod_{z=0}^{1} \pi_{z}^{N_{z, 1}}\left(1-\pi_{z}\right)^{N_{z, 0}}, \quad$ MLEs $\hat{\pi}_{z}=\left(N_{z, 1} / N_{z,+}, \quad z=0,1\right)$
(III) Multinomial Goodness of Fit. $\quad X_{a} \in C=\{1, \ldots, K\}$
$\pi_{k}=P\left(X_{a}=k \mid \theta\right), \quad \theta=\left(\pi_{k}, k=1, \ldots, K\right), \quad \widehat{\pi}_{k}=N_{k} / n$
Statistical tests and CIs based on $\hat{\theta}$ and Likelihood Ratio Tests

Three Classic Forms of Hypothesis Tests

Setting: $\underline{Y}=\left\{\left(X_{a}, Z_{a}\right)\right\}$ iid. or $\left\{X_{a}\right\}$ indep \& Z_{a} fixed Model: $p(\underline{y}, \theta)$ prob. mass function, $\theta=\theta(\beta), \beta \in \mathcal{U} \subset \mathbb{R}^{d}$ ($d \leq K-1$ in multinomial examples)
Null Hypothesis: $H_{0}: \beta=\left(\gamma_{0}, \lambda\right), \gamma \in \mathbb{R}^{q}, \lambda \in \mathbb{R}^{d-q}, q \leq d$
Wald Test based on $\hat{\gamma}-\gamma_{0}$ within $\hat{\beta} \underset{\sim}{\mathcal{D}} \mathcal{N}(\beta, V(\widehat{\beta}) / n)$
Score Test $(q=d)$ using $\nabla_{\beta} \log p\left(\underline{Y}, \theta_{0}\right) \stackrel{\mathcal{D}}{\approx} \mathcal{N}\left(\mathbf{0}, n\left(V\left(\beta_{0}\right)\right)^{-1}\right)$
LR Test $(q=d)$ based on $\Lambda=-2 \log \left(L\left(\theta_{0}\right) / L(\hat{\theta})\right) \stackrel{\mathcal{D}}{\sim} \chi_{d}^{2}$
More general $q<d$ versions of Score \& LRT replace θ_{0} in statistic by $\hat{\theta}_{r}, \quad$ where r means restricted subject to $\gamma=\beta_{0}$

Tests of $H_{0}: \beta=p=p_{0}$ in Binomial Case

$$
(\theta=(p, 1-p), \beta=p)
$$

No Z_{a} 's, $\quad X_{a} \sim \operatorname{Bernoulli}(p), \quad \hat{p}=N_{1} / n \sim \mathcal{N}(p, p(1-p) / n)$
(2-sided) Wald Test rejects when $\left|\hat{p}-p_{0}\right| \geq \Phi^{-1}(1-\alpha / 2) \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$ or equivalently, when $\frac{n\left(\hat{p}-p_{0}\right)^{2}}{\tilde{p}(1-\bar{p})}=\frac{\left(N_{1}-n p_{0}\right)^{2}}{N_{1}\left(1-N_{1} / n\right)} \geq \chi_{1, \alpha}^{2}$

Since $\nabla_{p} \log L(\theta, \underline{Y})=\frac{N_{1}}{\theta}-\frac{n-N_{1}}{1-\theta}=\frac{N_{1}-n p}{p(1-p)} \sim \mathcal{N}\left(0, \frac{n}{p(1-p)}\right)$
Score Test rejects when $\frac{\left(N_{1}-n p_{0}\right)^{2}}{n p_{0}\left(1-p_{0}\right)} \geq \chi_{1, \alpha}^{2}$
LRT rejects when $2 \cdot \log \left(N_{1} \log \left(\frac{\hat{p}}{p_{0}}\right)+\left(n-N_{1}\right) \log \left(\frac{1-\widehat{p}}{1-p_{0}}\right)\right) \geq \chi_{1, \alpha}^{2}$

Confidence Intervals Related to Tests, $d=1$

Generally with test statistic T a monotonic function of centered standardized estimate $\left|\widetilde{\beta}-\beta_{0}\right|$ (in 2-sided testing), tests $T \geq c_{\alpha}$ suggest Confidence Interval: $\left|\widetilde{\beta}-\theta_{0}\right| \leq \Phi^{-1}(1-\alpha / 2) \widehat{\operatorname{se}}(\widetilde{\beta})$

Inverted-Test CI defined differently, with $T=T\left(\beta_{0}\right)$ notationally linked to H_{0} parameter, as $\left\{\beta \in \mathbb{R}^{d}: T(\beta)<c_{\alpha}\right\}$

Both CI ideas are based on reference distribution for $T(\beta)$ valid when data satisfy model with parameter β.
Need not be related to normal or symmetric d.f. , can instead use $\alpha / 2,1-\alpha / 2$ quantiles for $\widetilde{\beta}$.

Confidence Intervals for p in Binomial Case

Wald: $\quad\left\{p:(\hat{p}-p)^{2} \leq \chi_{1, \alpha}^{2} \cdot \frac{\hat{p}(1-\hat{p})}{n}\right\}=\hat{p} \pm \Phi^{-1}(1-\alpha / 2) \frac{\sqrt{\hat{p}(1-\hat{p})}}{\sqrt{n}}$
Score $=$ Wilson, (inverted): $\left\{p:(\hat{p}-p)^{2} \leq \chi_{1, \alpha}^{2} \cdot \frac{p(1-p)}{n}\right\}$
(solve quadratic in p : interval approximated by Agresti-Coull interval which is Wald with $n \mapsto n+2, N_{1} \mapsto N_{1}+1$)
LRT (inverted): $\left\{p: 2 n \log \left(\hat{p} \log \left(\frac{\hat{p}}{p}\right)+(1-\hat{p}) \log \left(\frac{1-\hat{p}}{1-p}\right)\right) \leq \chi_{1, \alpha}^{2}\right\}$
Clopper-Pearson $\left[p_{L}, p_{U}\right]$ (which is very conservative) inverts exact one-sided binomial tails tests such that

$$
\operatorname{pbinom}\left(N_{1}, n, p_{U}\right)=\alpha / 2=1-\operatorname{pbinom}\left(N_{1}-1, n, p_{L}\right)
$$

Issue in Sec. 1.4.2, 16.6.1 and Exercise (A): the common Wald CI has poor (low) coverage, bad for surprisingly large n !!

Remarks about Moderate Sample-Size Behavior

(1) Part of the problem is the granularity of the discrete binomial for moderate n, as shown by the $n=100$ picture on the Course web-page comparing coverage of the Wald, Wilson, and ClopperPearson CI's.
(2) Related issue is Yates Continuity Correction: binomial $N_{1} \sim \operatorname{Binom}(n, p)$ could be said to assign probability dbinom (k, n, p) to interval ($k-1 / 2, k+1 / 2$), so normal approx should assign $P\left(N_{1} \geq k\right) \approx 1-\Phi((k-0.5-n p) / \sqrt{n p(1-p)})$ when $k \geq n p+1$.

